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Abstract—Reverse engineering (RE) a register transfer level
(RTL) description allows an attacker to counterfeit intellectual
property (IP) as well as introduce hardware trojans. To mitigate
this risk, RTL obfuscation can be employed. Most of the existing
obfuscation methods are targeted at gate-level and layout-level.
In this work, we propose key based RTL obfuscation scheme at
an early design phase during high-level synthesis (HLS). Given a
control data flow graph (CDFG), obfuscation points are identified
during scheduling and obfuscation logic is inserted during the
datapath generation phase. In order to keep performance over-
head low, such insertion is done only on noncritical paths. We
implemented the proposed obfuscation technique in an in-house
HLS system and the obfuscated RTL designs were synthesized to
gate-level with Synopsys Design compiler targeting 90nm CMOS
technology library. Based on the experimental results on four
datapath intensive benchmarks, we demonstrate that proposed
approach obfuscates the design with extremely low probability
of reverse engineering. For a 32-bit obfuscation key, the average
area, delay, and power overheads are 2.45%, 2.65%, and 2.61%
respectively, which are reasonable.

I. INTRODUCTION

In complex system-on-chip (SoC) design at advanced tech-
nology nodes, third party components (IPs, design automation
tools, library files, etc.) account for a significant portion of
chip design due to stringent time-to-market requirement. In
the heart of this design paradigm, fabless design house is
performing fabrication and testing in foreign foundries due to
the expensive cost of owning a foundry [1]. IP infringement
has been identified as major security challenge in this loose
control of system design. Concurrent threats on hardware allow
an ‘untrusted foundry’ to overbuild, counterfeit, insert trojans,
reverse engineer (RE) to leak valuable information without any
visible knowledge of original IP owner. Due to extended life
cycle and attack space in hardware design cycle, IP protection
at early design phase is essential to overcome the above security
challenges.

Hardware obfuscation is one of the possible countermeasures
to create obscure description (both structural and functional)
for native source language (e.g., VHDL, Verilog, SystemC).
Design protection through code obfuscation for software has
been investigated extensively so far [2]. Though semantic-
preserving transformations are performed for software ob-
fuscation, a similar line of obfuscation methods entail both
semantic- and functionality-preserving for hardware. One ben-
efit of hardware obfuscation is to render ‘unintelligible’ netlist

and hence slow down the reverse-engineering approaches for
smart hackers/attackers.

At gate- and layout-level, there is a wealth of techniques
in literature for IP protection using several techniques such
as hardware metering [3]–[5], digital watermarking [6]–[8],
and fingerprint analysis [9]–[11]. The underlying assumption
of key-based obfuscation methods is to prevent RE of the state
transition functionality extraction for RTL and gate-level design
and this has been possible by embedding additional states for
correct key initialization [12]–[16]. Such key-based approaches
have two common characteristics: (a) system initialization on
correct key value else entering into ‘black hole state’; and (b)
a large number of sequential elements to prevent brute-force
attack.

A naive implementation of key-based obfuscation is to
embed a large number of state elements incurring significant
design overhead. Although this simple technique would expose
the attacker to perform brute-force attack, security primitives
should be implemented with minimal design overhead. As a
result, carefully determining obfuscation points is of paramount
interest. However, no systematic approach is available to con-
struct the obfuscated RTL netlist from a high-level design
description (C, C++, SystemC). This motivates us to pursue
an approach to obfuscate RTL design at an early phase of
the design cycle. Our goal for obfuscation is achieved through
enhanced complexity of reverse engineering task.

To the best of the authors’ knowledge, this is the first work
that attempts key based obfuscation during HLS. The main
contribution of this work is to automate the obfuscation of an
RTL design during the design phase by determining possible
obfuscation points early on. The proposed algorithm finds
operations on non-critical paths of the input CDFG (control-
data flow graph) for obfuscation logic insertion during the
datapath generation. Experimental results for four datapath
intensive benchmarks implemented in 90nm technology node
show that the proposed obfuscation for the 32-bit key can be
achieved with acceptable 2.45% area, 2.65% delay, and 2.61%
power overheads.

Section 2 presents an overview of hardware obfuscation
which forms the basis of providing obfuscation during behav-
ioral synthesis. Section 3 presents in detail the proposed ob-
fuscation method during high-level synthesis. Section 4 reports
the experimental results. Section 5 draws conclusions.
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Fig. 1: Obfuscation during IC design in trusted/untrusted design environment.

II. BACKGROUND AND RELATED WORK

This section summarizes the RTL, gate-level, and layout-
level approaches of current hardware obfuscation methods for
mitigating reverse engineering.

Hardware obfuscation is a technique for protection against
leaking design specification during untrusted execution. It in-
creases the difficulty to read, interpret and eventually modifying
the structure and functionality of inherent IP/IC. Hardware
obfuscation can be described as follows. An RTL output
denoted by out = f(dp0, ctrl0) can be obfuscated to produce
out = f ′(dp1, ctrl1, k) where {dp0, dp1, k} are, respectively,
regular datapath, obfuscated datapath and key value. Similarly,
{ctrl0, ctrl1} denote regular controller and obfuscated con-
troller respectively. The regular RTL design f and obfuscated
RTL design f ′ must be structurally different but functionally
equivalent for a unique obfuscation key value.

To protect soft IP’s behavioral description from an adversary,
Chakraborty and Bhunia proposed mode-based FSM design by
extending the bit-length of a host register to select appropriate
mode [13]. As correct values (keys) need to be passed along the
design phase for correct functionality during system integration,
an attacker in integration house or foundry can overbuild the
same IP. A similar line of defense to construct obfuscated RTL
IP following gate-level netlist modification and de-compilation
is proposed in [14]. Li and Zhou examine in detail the penalty
for piracy based on stuttering for sequential circuits [15].
Their approach uses common input combinations for all FF’s in
the design to determine normal and slow mode operation for the
design. However, protection scheme of a hard IP deliverable to
system integrator by the IP owner is not specified. Comparator-
free dynamic codeword generation and encoded within transi-
tion function for correct circuit functionality is proposed in [17].
The authors mention that traversing a particular path makes it
feasible to create code-word to be interlocked within the design.
A functional mode is carried out even with wrong code-word to
create incorrect circuit behavior thus creating more confusion
for the attacker.

The concept of ‘ObfusFlow (Obfuscated Design Flow)’ at
the gate level design was proposed by Chakraborty and Bhunia
[12]. The output of an embedded FSM having the same number
of inputs is XOR-ed with the node(s) having larger fan-in
and fan-out to determine the exact input sequence of internal
state elements. An extended version of this technique namely
‘HARPOON’ can ensure both authentication and obfuscation
for gate level netlist [16].

There have been recent efforts to obfuscate design at the
layout level. Circuit camouflaging against image-recognition
based attack analysis to recover the original chip design in-
cludes creating cells that seem identical in terms of size and
layer spacing [18]–[20].

III. PROPOSED APPROACH

A. Attack model

An attacker with the help of compromised design tool or
extraction tool [21] can retrieve the high-level functionality
of a design. Usage of such disassembling tool can increase
attacker confidence in reverse engineering against obfuscation
approach. We assume an attack model wherein the early design
phase until RTL design is in trusted zone and untrusted later
on (See Figure 1). It is reasonable as system integrator find
their way to reveal key-less IPs specification at a reasonable
performance cost while an untrusted foundry can perform IP
piracy. Therefore, designs sent out to a foundry for fabrica-
tion following integration must be obfuscated to protect from
malicious attack scenario. Further, in order to minimize de-
obfuscation intent, such obfuscation should be provided in early
design phase. Compared to prior work [13], we incorporate
obfuscation during the datapath generation phase of high-
level synthesis, while in [13], the RTL design is modified
during post-synthesis. Our approach provides more freedom for
obfuscation. Works exist that introduce exor and inverters for
obfuscation purposes [13], [22]; compared to these works, using
muxes provides a function agnostic way and thus is applicable
to wide variety of applications.

Given a specification, HLS tool performs the structural syn-
thesis. Obfuscation technique is then applied to RTL descrip-
tion. The obfuscated netlist is passed down to logic synthesis
tool to create an obfuscated logic model and physical synthesis
produces the geometric obfuscated layout of the design and its
interface to other IPs. As integrator and foundry are commonly
untrusted due to their knowledge of the firm and hard silicon
features respectively, the correct de-obfuscation keys from
early design space will be provided only after the design is
manufactured.

B. Proposed framework

Figure 2 shows the HLS framework for obfuscation as a
synthesis objective. The input is user-specified area, clock fre-
quency, and obfuscation key length. It incorporates an overhead
estimator to generate the revised area and frequency constraint
for a given key length. The revised constraints are used as
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Fig. 2: High Level Synthesis for Obfuscated RTL design flow

Algorithm Obfuscate
Input: G=Scheduled CDFG, K=Random Key
Output: Obfuscated RTL Datapath

begin
// Step 1 - Identify obf. set
foreach operation op in G do
if(op is not on critical path) then
Add op to Obf_op_set{}

end if
end for
// Step 2 - Insert obf. logic randomly
foreach bit k_i in K do
op <- Randomly pick an obfuscation op

from Obf_op_set{}
I <- Randomly select from {input1,

input2, output} of the op for
obfuscation logic insertion.

Insert a mux with two inputs
if(k_i = 0) then
input0 of mux <- I
input1 of mux <- random line

else
input0 of mux <- random line
input1 of mux <- I

end if
mux select <- k_i

end for
end

Fig. 3: Proposed RTL Obfuscation Algorithm

input to perform architectural synthesis. The resultant interme-
diate representation is passed down to obfuscation phase. The
probable obfuscation points are identified and obfuscation logic
from which obfuscated RTL netlist is generated.

Figure 3 shows the pseudo-code of the proposed obfuscation
algorithm. It accepts a scheduled CDFG (G) and a random
key (K). There two major steps. In the first step, the graph
is analyzed for operations for possible obfuscation at their
inputs or output. In order not to degrade the performance
of the design, only the operations on non-critical paths are
considered. In the second step, obfuscation logic is inserted
in the design. For each bit of the obfuscation key, randomly
we select an operation and its input or output line and replace
it with a 2-input multiplexer. The select line of the mux is
controlled by the key bit. Randomly a line in the design is
selected and fed to the input besides the original input. After
inserting obfuscation logic for all bits in the key, the obfuscated
datapath is generated. Note that in our approach the obfuscation
logic is inserted in the datapath only. Although the controller
is untouched, in order to RE the design, the attacker must
know the original algorithm and the schedule, allocation, and
binding information. We assume that this information is kept
confidential and unavailable during the untrusted design phase.

The time complexity of the algorithm can be estimated as
follows. The first step of obfuscation operation set identification
requires computation of mobility of each operation. This can be
done by performing ASAP and ALAP scheduling on the CDFG.
For directed acyclic graphs, the worst case complexity of these
algorithms is same as that of topological sort i.e., O(|V |+ |E|),
where V is the number of operations and E the number of edges
in G. The second step is of constant time complexity. Therefore,
the overall time complexity is O(|V |+ |E|).

C. Motivational example

To illustrate early design obfuscation approach, consider a
simple multiplicative function, namely, f = e ∗ (a ∗ b) ∗ (c ∗ d).
Assume that two multipliers and five registers are available.
We assume input values are readily available at the beginning
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of execution (control step 0, cs0). The maximum number of
multiplication operations that can be performed in a given cycle
is two. Let us consider the critical path along {a, t1, t2, f}.
A resource constrained scheduling of function f is shown in
Figure 4a. Based on available resources, an example datapath
is as shown in Figure 4b.

Operation 4 has the flexibility to be scheduled in either cs1
or cs2 as shown in Figure 4a. As the inputs are not required
until cs2, for schedule shown in Figure 5a obfuscation can be
performed on the inputs of Operation 4, thus tolerating delay
on the inputs. While in schedule shown in Figure 5b, as its
output is not required until cs3, the output can be obfuscated.
The corresponding datapaths are as shown in Figures 6a and
6b. This example illustrates the obfuscation possibilities arising
due to scheduling. In the sequel, we refer to operations with
mobility as relaxed.

Before delving into the details of the proposed obfuscation,
it is important to stress the impact of mobility that use time
difference between start times for as soon as possible (ASAP)
and as late as possible (ALAP) scheduling. In our approach,
we perform the mobility calculation [23] of each node after
scheduling is completed. The nodes having zero mobility

restricts their scheduling at a particular time to meet latency
constraint and scheduling for the nodes having mobility greater
than one can be relaxed. In our example, operations 1, 2, and
3 have zero mobility as they satisfy the latency bound (four
control steps) and operation 4 has the mobility of one, so it is
a relaxed node.

As relaxed scheduling consists possible obfuscation points,
we limit our discussion to impose obfuscation logic in those
partial nodes of data flow graph. As shown in Figure 5, small
dotted lines represent the flexibility of obfuscation logic. We
can embed steering logic along the edges represented by nodes
{c, d, e} to increase the difficulty of an attacker from logging
original structural information. For example, obfuscated data-
path in Figure 6a is produced by a scheduled DFG in Figure
5a. Here, key 0, 1 and 2 belong to obfuscation points for nodes
{e, c, d}. Input value in red mark represents the correct 1-bit key
for each mux. For this obfuscated datapath, we introduce three
2-input multiplexers (mux). However, if additional inputs are
available for mux, the resultant obfuscated datapath can reveal
very limited to no local structure compared to 2-input mux for
the brute-force attack. Either primary input c or d can be fed
into key0 based mux along with primary input e. We arbitrarily
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Fig. 6: Possible Obfuscation points of arithmetic function: f= e*(a*b)*(c*d).

TABLE I: Scheduling freedom for f (cs=control step).

Scheduling Unobfuscated Obfuscated key
variant function (f) function (f’) Value (k)
Fig. 6a e*(a*b)*(c*d) (k0e+ k0c)*(a*b)*(k1c + k1d)* (k2c + k2d) {k0, k1, k2} = {0, 0, 1}
Fig. 6b e*(a*b)*(c*d) (k0e+ k0c)*(a*b)*(k1e+ (k1(c*d)) {k0, k1} = {0, 1}

choose primary input c here. Similarly, Figure 5b reconstructs
the original datapath in Figure 6b for two (2) obfuscation
points. The criterion for higher obfuscation is determined by
the number of available inputs for mux and relaxed nodes. An
example of multiplicative function generation based on mux
size and a number of obfuscation points is shown in Table I.

D. Difficulty of attack

We evaluate the proposed scheduling based obfuscation
scheme in terms of three metrics: (a) potency, (b) resilience, and
(c) cost [24]. Potency refers to the difficulty level of an attacker
to understand an obfuscated program. As we cannot quantify
this subjective metric and we want the attacker to carry out the
circuit functionality with wrong output, a formal equivalence
tool (BDD, OBDD, ROBDD) cannot construct correct data-flow
graph due to large space of obfuscation points.

Resilience determines the withstanding capability of an ob-
fuscated datapath against attacker attempt. Given the num-
ber of registers (R) each being n-bit width and a number
of obfuscation keys (k), an attacker has to figure out the
possible registers location holding those k-keys. One out of
R∑

k=1

(
R∗n
k

)
possibilities can determine correct key locations in

finite amount of datapath registers. The search is augmented
by k! different ways of arranging k keys into R registers.
We ensure the resilience of obfuscated dataflow graph by the
following equation:

P (R,n, k) =
1

R∑
k=1

(
R∗n
k

)
∗ k!

(1)

A lower value of P requires brute-force attack in de-obfuscating
RTL datapath for correct obfuscation points. With a larger
number of register bits and key size, the attackers need more
resources (computational time and effort) to reverse engineer
the design.

IV. EXPERIMENTAL RESULTS

An in-house HLS tool is used to insert obfuscation logic into
regular RTL datapath. A functional testing procedure to assess
the obfuscated RTL against reverse engineering is presented.
Finally, the results of applying the proposed obfuscation scheme
on HLS benchmarks are analyzed for design overhead given a
key length and latency bound.

A. Experimental Setup

The experimental flow of obfuscating a high-level design
description is as follows:

1) Input to the HLS tool is a VHDL behavioral description
that is converted into a CDFG. The CDFG is scheduled
with Force-Directed Scheduling algorithm for a given
latency constraint. Resource allocation and binding are
automatically performed. Then structural datapath and
behavioral controller are generated in VHDL.

2) The RTL design is synthesized with Synopsys Design
Compiler in 90nm technology to generate gate level
netlist. Synopsys VCS-MX was used to check the func-
tional equivalence of synthesized netlist and original
RTL.

3) To generate the obfuscated design, obfuscation is carried
out before VHDL generation with the algorithm described
in Section III(B). The obfuscation elements are preserved
as keys are provided through primary inputs (PI). This
renders a functionally equivalent structurally modified
RTL netlist.

B. Results and analysis

We implemented our proposed obfuscation technique in
C programming language and evaluated it on four datapath
intensive HLS benchmarks, namely Elliptic Wave Filter (El-
liptic), Fast Fourier Transform (FFT), Finite Impulse Response
(FIR) Filter, and Lattice Filter. The RTL designs are targetted



TABLE II: Comparison of design attributes of non-obfuscated and obfuscated designs.

Design Non-obfuscated Obfuscated Obfuscation Overhead Resilience (P)
Latency # Operations # Registers Area Delay Power Area Delay Power Area Delay Power
Bound (A=+, M=*, S=-) (Datapath + (um2) (ns) (uW) (um2) (ns) (uW) Overhead Overhead Overhead
(λ) Controller) (%) (%) (%)

Elliptic 15 (26+, 8*) 43 110941 28.04 536.03 114474 28.84 548.82 3.18 2.85 2.38 5.2e−97
FIR 5 (4+, 5*) 19 76806 25.80 507.70 78013 26.58 509.05 1.59 3.02 0.26 18.8e−86
FFT 10 (20+, 16*, 4-) 56 67152 19.62 320.25 69096 20.26 331.91 2.89 3.26 3.64 6.6e−44

Lattice 10 (8+, 5*) 21 64796 26.65 360.86 66197 27.05 375.94 2.16 1.50 4.17 7.0e−87
Average 2.45 2.65 2.617

to Synopsys SAED 90nm PDK standard cell library. PPA
(power, performance, and area) analysis of the user-specified
architecture optimization is carried out for each design. A direct
comparison with prior RTL obfuscation technique [13] is not
possible, as our RTL designs are generated from algorithmic
descriptions, while in [13] the RTL code is manually written
and is not partitioned into datapath and control.

Table II reports design overhead compared to non-obfuscated
design. For a key length of 32 bits, we incur, on average
2.45% area overhead. We observe the power overhead 2.61%
for same key length sequence. The delay overhead of 2.65%
is reasonable for possible obfuscation points and available re-
sources. These are reasonable trade-offs for the high resistance
to malicious reverse engineering.

In the last column of Table II, we report the probability
values for resilience i.e., obfuscation efficiency using Equation
(1) for 32-bit keys. It is intuitive that for such extremely low
values an attacker will enumerate all possible netlists, thereby
likely facing high resistance to reverse engineering. Superior
resilience can be provided by a random distribution of key in
both controller and datapath circuitry using our scheme.

V. CONCLUSIONS

Obfuscation of an RTL datapath early in the design flow can
help to build in high resistance to reverse engineering effort.
In this paper, we introduce for the the first time, a technique
to obfuscate an RTL design during high-level synthesis. Oper-
ations on non-critical paths in the CDFG are targeted so that
there is little or no performance overhead. Experimental results
for four data-path intensive benchmarks is highly promising.
Further, we show that the probability of reverse engineering
which bits are the obfuscation key bits is extremely low.
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