
Double Error Cellular Automata-Based Error Correction with Skip-mode
Compact Syndrome Coding for Resilient PUF Design

Anthony Mattar El Raachini, Hussein Alawieh, Adam Issa, Zainab Swaidan, Rouwaida Kanj, Ali Chehab and Mazen A. R. Saghir
American University of Beirut, Beirut, Lebanon, 1107 2020

ABSTRACT
Physical Unclonable Functions (PUFs) present an attractive
security primitive due to their volatile key generation capability.
Subject to environmental conditions, the PUF response,
however, is prone to errors which may undermine the reliability
of the system when left unaddressed. An error-correction
scheme is typically used alongside the PUF circuit when used for
cryptographic applications. In this paper, we propose the use of
Cellular-Automata Error-Correcting Codes (CAECC) due to
their simplicity and regularity. An efficient implementation of
(15, 7, 5) CA-ECC encoder/decoder targeting a Xilinx Zynq-
7000 device is demonstrated, and the design is validated on
design compiler targeting 40nm TSMC technology. We also
propose a skip-mode compact syndrome coding scheme for
relaxed per-block BER. CAECC is tested in conjunction with
the skip-mode scheme, and the approach is verified on ring
oscillator PUF data. The skip-mode scheme is found to reduce
the ring oscillator overhead up to 20% and enhance the entropy
up to 23% compared to no-skip schemes.

1. INTRODUCTION
From Tesla’s smart vehicles to Dell and Intel’s telemedicine
solutions [1, 2], the IoT industrial revolution has already
started. With a wide span of applications, Gartner and IDC
estimate around six to nine billion connected devices are in
use worldwide [3]; they expect this number to explode to 20
billion in 2020. A security breach on any of these smart
devices can infiltrate the network and may affect millions of
users around the world. In 2016, a distributed denial of
service (DDoS) attack targeted the KrebsOnSecurity website.
The malware powering the IoT botnet responsible for the
attack was made publically available, raising the specter of
additional attacks [4]. It is, therefore, very critical for IoT
devices to carry out operations and communications in a
highly secure but efficient fashion. Nearly all security models
rely on a stored secret key which is vulnerable to invasive
attacks. A physical unclonable function (PUF) is a circuit
primitive that extracts secrets from physical properties of
integrated circuits. PUFs generate volatile secret keys
available in digital form when the chip is running making it
very difficult to discover compared to nonvolatile keys [5].

IC PUFs employ a variety of underlying circuit structures
such as SRAMs, Arbiters and Ring Oscillators (RO) [5, 6, 7].
RO PUFs are the most popular due to their ease of
implementation. In its most basic implementation, a response
bit is generated by comparing the delays of a pair of ROs.
However, RO PUFs are vulnerable to environmental
conditions which can affect the frequency of the ROs, and
hence the reproducibility of the response. The authors in [5]
propose a 1-out-of-8 masking scheme that picks the slowest
and fastest ring oscillators in each group of 8 oscillators to
determine the bit response. This minimizes sensitivities to
small frequency variations due to enviornment effects and

hence enables a reliable output bit response. An entropy-
maximization technique is proposed in [8], where ROs with
a frequency difference above a certain stability threshold are
grouped by the longest increasing subsequence algorithm
(LISA). The permutation of ROs in the same group is then
mapped into bits using compact syndrome coding (CSC).
This allows the realization of a near maximal entropy
corresponding to a fixed number of ROs. An alternative non-
compact mapping into bits based on Kendall Syndrome
Coding (KSC) was devised in [9] to correlate the error weight
distribution of the resulting bit string to the underlying error
probability distribution of the rank flips within a certain
permutation. This would relax the error correction
requirements at the expense of extra computational effort in
terms of KSC implementation and the need for an entropy
packing stage that remaps permutations compactly into bits
after error correction. The choice of the RO frequency
comparison technique and its stability threshold together with
the choice of the error correction code guarantees that the
PUF produces the same response consistently. The role of
ECCs is stressed out in guaranteeing the PUF response
reproducibility. In [10], Chowdhury et al. proposed a cellular
automata (CA) based error correction code. The circuit
structure of the CAECC is amenable to VLSI
implementations due to its simplicity, regularity, and
cascadability. This is compared to conventional ECCs such
as BCH codes whose irregularity and decoding structure
complexity increase with the number of information bits [10].
The authors demonstrate a single-error-correction double-
error detection Null Boundary Cellular Automata-based
(NBCA) ECC which reduces decoding complexity compared
to Hsiao code. Cho et al. [11] propose a double-error
correcting code with reduced number of check-bits based on
Periodic Boundary CA (PBCA).

In this paper, we evaluate for the first time the CA-based
ECC code in the context of a newly proposed skip-mode CSC
scheme on RO PUF data obtained from [12]. The skip-mode
scheme is proposed to relax the per-Block bit error rate in the
event of most probable adjacent RO rank flips. We also
evaluate the design complexity of CAECC by simulating a
(15, 7, 5) CAECC encoder/decoder blocks using the Xilinx
Vivado tool-suite. The paper is organized as follows. Section
2 provides a background review on ECC for PUF, and cellular
automata basics. Section 3 discusses the CA encoding and
decoding algorithms. The proposed skip-mode CSC scheme
for group-based ROPUFs is presented in Section 4. An
efficient design of a double-error CAECC encoder and
decoder targeting xc7z020clg484-1 FPGA used in the Zynq-
7000 ZedBoard is presented in Section 5. This is followed by
validation of the proposed scheme on RO PUF data.
Conclusions follow in Section 6.

978-1-5386-1214-9/18/$31.00 ©2018 IEEE 413 19th Int'l Symposium on Quality Electronic Design

2. BACKGROUND REVIEW
2.1 Error Correction for Physical Unclonable Functions
Temperature, supply voltage and thermal noise may force a
PUF cell to produce an erroneous output. Conventional
methods for error correction in PUFs use XOR masking, also
known as the code-offset construction, which performs a
bitwise XOR of the parity information with the PUF output
(Fig. 1) [13]. The code-offset construction steps for an n-bit
PUF response vector r are summarized as follows.
(1) The n-bit response r is divided into a k-bit information
vector m and an (n-k)-bit vector c.
(2) Upon initialization, the information vector m is fed into
an encoder, which generates the (n-k) check-bit vector cb.
(3) Vectors c and cb are XORed to produce the helper bits,
which are stored in nonvolatile memory as vector h. Even
with helper data present, the adversary still needs to guess k
information bits to find the correct PUF response [13].
(4) Upon deployment, the PUF response is r’ with unknown
error vector E. Vector c’ is XORed with h.
(5) The result, along with vector m’ (information vector from
the second reading), is fed into the decoder, which produces
the correct k-bit m used to build the cryptographic key; large
keys can be derived from multiple smaller k-bit blocks.

Figure 1. Typical Error correction flow for PUF response.

2.2 Cellular Automata
Cellular Automata are mathematical idealizations of physical
systems in which space and time are discrete [11, 14].
Cellular Automata cell: Each cell consists of a D flip-flop
and a next-state function, which depends on the cell current
state and that of its two neighbors according to specific rules. ݍ௜௧ାଵ ൌ ݂ሺݍ௜ିଵ௧ , ,௜௧ݍ ௜ାଵ௧ݍ ሻ ࢚࢏ࢗ: The	state	of	the	i୲୦	cell	at	instant	t ࢌ: Logic	function	generating	next	state	
k-cell CA: the different next-state functions can be all
represented by the ݇ ൈ ݇ characteristic matrix Tk. The next-
state vector of the entire CA can be obtained by multiplying
the current-state vector by the characteristic matrix. To obtain
the state of the CA after ‘p’ cycles, it suffices to multiply the
current state vector by the characteristic matrix ‘p’ times. ௧݂ାଵ ൌ ܶ ൈ ௧݂ ௧݂ା௣ ൌ ܶ௣ ൈ ௧݂ ࢚ࢌ: The	current	state	vector	of	the	CA	at	instant	t ࢀ: k ൈ k	characteristic	matrix	of	the	CA
CA ECC: The CA can be used to generate a set of codewords
with any specified hamming distance. It is proven that a k-

cell CA with a characteristic matrix T generates a t-distance
code if for some integer p, Tp satisfies ∀i, 0 < i < t, the bitwise
sum of any i columns of Tp contains at least (t - i) 1’s [10].

3. CELLULAR AUTOMATA ECC
We follow the method proposed by [11] which improves on
the original code of Chowdhury et al., [10] by reducing the
number of check bits needed for the same error-correction
capability for (n, k, 5) codes. For purposes of our
implementation, we focus on (15, 7, 5) 2-bit error correction
codes, and the PUF response is divided into several 15-bit
blocks each with 7 information bits.
3.1 Encoder Design
Fig. 2 presents the high-level scheme for check-bit
generation. The k information bits are fed into the k-cell CA,
which is run for 3 cycles. The resulting vector state is used as
the input of a logic circuit g(Q) which generates the (n-k)
check bits cb [10]. The entire encoding process is represented
by an (n-k)×k matrix T. Multiplying the matrix by a k-bit
information vector yields the corresponding (n-k) check bits
[11]. The algorithm used to generate T for an (n, k, 5) CAECC
is described in Fig. 3. Fig. 4 presents, the k-cell CA and the
corresponding FSM for the (15, 7, 5) encoder.

Figure 2. Encoder Block.

Algorithm 1: CAECC Encoder Block T
1. Construct the kxk characteristic matrix Tk to model the k-cell

CA according to the rules <102,102,…,102,150>
2. Calculate Tk

3
3. Change the (1, k)-element of Tk

3 with 1

4. Add the matrix ቀ૚ ૙ ૚ ૙ ⋯ ૚ ૙૙ ૚ ૙ ૚ ⋯ ૚ ૚ቁ to the new matrix.

The new matrix is labeled T’.
5. Add the rows which don’t have 1’s at the same positions to

obtain the matrix with the minimum number of rows which
satisfies the following two conditions:
a. Every column contains at least four 1’s.
b. The sum of any number of columns is not a zero vector.

Figure 3. Algorithm for (n, k, 5) encoder block matrix [11].

Figure 4. (a) FSM to run the k-cell CA 3 times. (b) k-cell CA.

In the ’init’ state, the CE signal latches the information
vector. In the ‘work’ state, the CE signal latches the next state
as computed per the CA rules. Reset signal sets the outputs of
the k-cell to zero. Enable signal is used in conjunction with
the clock to activate the latches during ‘init’ and ‘work’
states. Note that block g(Q) is derived from ௞ܶଷ and T, and
together with the k-cell CA, they are of comparable
complexity and perform the same function as T.

3.2 Decoder
The decoding scheme is based on an inverse transformation
that leverages the properties of the CA. Given a new response
r’ with unknown error E: to find E, we first calculate a
syndrome vector S using the parity matrix H formed by
concatenating T and an (n-k)x(n-k) identity matrix In-k as
illustrated in eq. (1). The error vector can be derived from S
by relying on an augmented matrix version of H, called Taug,
the details of which are well explained in [11]. Thus, E can
be derived uniquely using ௔ܶ௨௚ିଵ according to eq. (2), where
Saug is a kx1 vector whose value depends on S. To determine
the mapping that generates Saug from S, we construct a table
based on all permissible error vectors [10], Ep, and generate
(S, Saug) pairs according to eq. (4). This table is mapped to a
combinatorial logic block whose input is S and output is Saug
and whose size increases as the number of permissible error
vectors increase. We refer to this block as SaugMap. For
purposes of the (15, 7, 5) code, the block maps the syndromes
resulting from all permissible (0, 1 or 2) errors for the double-
error correcting code to Saug. The full decoding scheme is
summarized in Fig. 5 below.

Figure 5. The decoding scheme. ‘Map Saug’ block is derived from
all permissible error vectors. 						ݎ௡ᇱ 													ൌ ሾ	݉′଴,௞ିଵ	ห	ܿ଴,௡ି௞ᇱ ൧ (1) ݉ᇱ଴,..,௞ିଵ ൌ ሾ	݉଴,..,௞ିଵܧ଴,..,௞ିଵ	ሿ
 ܿ଴,..,௡ି௞					ᇱ ൌ ሾ	ܿ଴,…,௡ି௞ܧ௞,…,௡	ሿ ݓ௡ൈଵᇱ 							ൌ ሾ݉′଴,..,௞ିଵ	ห݄ܿ଴,…,௡ି௞ᇱ ൧ ܪሺ௡ି௞ሻൈ௡ ൌ ሾ ሺܶ௡ି௞ሻൈ௞|ܫ௡ି௞ሿ
 ܵ௡ି௞ 								ൌ ሺ௡ି௞ሻൈ௡ܪ	 ∗ ௡௫ଵ′ݓ

 E ൌ Tୟ୳୥ିଵ ൫SหSୟ୳୥൯୘ (2) 							Tୟ୳୥ିଵ ൌ ൤0௞ൈ௡ି௞ ௡ି௞ܫ௞ܫ ௡ܶି௞ൈ௞൨ (3) 						 ௔ܶ௨௚E୮ ൌ ൫SหSୟ୳୥൯୘ (4)

4. CSC WITH SKIP-MODE
4.1 Group-based Response Vector Generation
To generate the PUF response, the group-based technique
compares multiple ROs at once in an attempt to enhance the
entropy compared to the pairwise-comparison approach. For

n ROs in a group, there are n! ways to order these ROs by
speed. For example, suppose a group has 4 ROs {A, B, C, D}
then there are 4! = 24 possible permutations of the ROs in this
group. These permutations can be represented in ⌈log (݊!)⌉
bits. Mapping the permutation to bits is performed using CSC
syndrome coding. This technique, has two challenges [15].
1) The RO groups are subject to systematic errors on the
chip: this is often resolved via regression techniques that
identify systematic components and extract randomness.
2) High number of bit errors corresponding to most
probable adjacent–RO flips is recorded when utilizing CSC.
For example: rank permutation ‘ADCB’ is encoded by
‘00101’. It is possible that upon regeneration a flip occurs
between ROA and ROD ranks, (‘DACB’) which is encoded by
‘10011’. KSC technique was proposed in [15] to better
correlate RO flips to bit errors, such that more probable
adjacent RO flips would result in less bit errors. This requires,
however, an additional KSC encoding step, ECC on a much
longer sequence compared to CSC, and inverse KSC prior to
converting the bits to CSC representation. In what follows,
we propose to enhance the tolerance to the number of bit
errors by spreading the group bits across different response
blocks as opposed to changing the encoding scheme.
4.2 Preliminaries
We elaborate on a 256-bit key example to highlight the
concept of response blocks. We also discuss numerical
limitations of the CSC encoding scheme to explicate the
underlying assumptions in the following sections.
256-bit key Example and (15, 7, 5) CAECC: We use the
PUF response to generate a 256-bit key (sk=256), and we rely
on (n=15, k=7, t=5) CAECC to recover from possible RO
rank flips. Accordingly, the length of the corresponding PUF

response vector should be ݏ௥ ൌ ቒ௦ೖ௞ ቓ ∗ ݊= 555 bits to

accommodate for the information bits and the redundancy
bits. For purposes of error correction, the response is divided

into 15-bit blocks whose number ݊ݏ݇ܿ݋݈ܤ ൌ ቒ௦ೖ௞ ቓ	= 37.

CSC code limitations and a maximum number of 18-ROs
per group: Figure 6 presents the pseudo-code for the CSC
encoding scheme. It invokes large factorial computations

(∑ ݅!|௚|ିଵ௜ୀଵ), where |g| is the number of ROs in a group, (lines
2 and 7). Due to the limited number of significant digits (15)
in the Mantissa part of the double precision integer
representation, large group sizes would result in factorial
numbers that require more than 15 significant digits and thus
cannot be represented accurately. Hence, a maximum of 18-
RO groups can be formed for accurate encoding.
 Given: a group g containing ordered ROs [RO1 …. RO|g|]

CSC Encoding: outputs a CSC encoded integer cg in logଶሺ⌈|݃|!⌉ሻ bits
1:
2:
3:
4:
5:
6:
7:
8:

cg = 0
for i = |g| to 2 do
 { inv = 0 // number of inversions
 for j=1 to (i-1) do
 { if ROi < ROj then
 inv = inv + 1}
 cg = (cg + inv) *(i - 1) }
return cg

Figure 6. CSC encoding scheme[15].

4.3 Skip-mode CSC
In CSC, a highly probable adjacent RO rank flip can result in
multiple bit flips within the same group. Figure 7 illustrates a
sketch of an example CSC response vector. Assume that the
ECC can correct a maximum of 1 bit in a 4-bit block. An RO
rank Flip in Group 1 leads to error in bits x2 and x3. This
results in the inability of the ECC to correct block1 in the
Base CSC response. We propose skip-mode CSC to enhance
error correction capability by relaxing the number of per-
Block bit fails for small codewords. This is achieved by
distributing the group bits across the different ECC blocks
and hence reduce the per-block BER. Figure 8 presents a
possible way to distribute the bits of the same group across
the different blocks. In a more conservative skip-mode CSC,
one can restrict the maximum number of ROs per group such
that the number of bits per group is equal or less than the
number of ECC blocks of the target response. In this scenario,
only one group bit appears in a block. This comes at the
expense of entropy loss. Thus, for the 256-bit key example,
the conservative skip-mode restricts the group size to |g|=14
ROs: (ඃlog2ሺ |14|!ሻඇ ൌ ݏ݇ܿ݋݈ܤ݊ ൌ 37ሻ.

Figure 7. Skip mode relaxes number of error bits within ECC block
for cases of most probable adjacent RO flips.

 To understand the effect of skip-mode on reducing per-Block
BER, we construct 1000 replications of 555-bit responses and
record the maximum number of bit errors per 15-bit blocks
based on the following three scenarios: (1) The regular no-
skip scenario, (2) skip-mode scenario (18-RO groups), and
(3) conservative skip-mode (14-RO groups). Fig. 9 presents
the results for 1, 2, 3, and 4-adjacent RO rank flips. We note
that the maximum number of error bits per 15-bit blocks for
a given response reaches 12 for the no-skip CSC scenario. It
is limited to 5 for the skip-mode, and 4 for 14-RO groups in
the conservative skip-mode. Most importantly, for the skip-
modes, all 1-adjacent RO flips and most of 2-adjacent RO
rank flips are limited to a maximum of 2-errors per 15-bit
block and hence can be resolved by 2-bit error correction
codes. It is worth noting that in the presence of environmental
variations and as the grouping threshold increases, the group
sizes naturally decrease, so the regular skip-mode would act
conservatively naturally.

Skip-mode CSC
Given:
Initialize:

Ω={cg1, …, cg|Ω|} // group bits as derived from CSC encoding
ptr=ሼ1, 1, . . ሽ|ஐ| ,cnt=1, sg={|cg1|, …, |cg|Ω||}

Build
tmpVector

while (|Ω|)> 0)
 for each Group i
 { step=min(nBlocks, sg(i))
 if (step)
 {tmpVector(cnt:cnt+step-1)<-cgi(ptr(i):ptr(i)+step-1)
 ptr(i)<- ptr(i)+step
 cnt=cnt+step
 sg(i)=sg(i)-step
 if (sg(i)==0)
 { ptr(i)<- null
 Ω= Ω - cgi }}}

Map
Blocks

cnt=1
for each Col j ∈ myWords
 { Col j <- tmpVector (cnt: cnt+nBlocks-1)
 cnt<-cnt +nBlocks }

Figure 8. Skip mode pseudo-code.

Figure 9. Maximum number of Error bits in the different modes.

5. RESULTS AND ANALYSIS
In this section, we evaluate the efficiency of the CAECC

with skip-mode CSC on real RO PUF data. First, we present
the CAECC encoder/decoder design.
5.1 (15, 7, 5) CAECC Encoder/Decoder Design
The (15, 7, 5) double error correcting CAECC encoder was
designed using the Xilinx Vivado tool-suite and targeting the
xc7z020clg484-1 FPGA device. Figure 10 presents the
schematic of the encoder K-cell CA and the decoder SaugMap
blocks respectively. Figure 11 presents the behavioral
simulation plot when vector w’≡[m, cb]⊕E is fed to the
decoder. For this example, w’=[010100111010101]
corresponding to [m, cb]=[010110111011101]. The output of
the decoder correctly identifies the corresponding error
vector E=[000010000001000]. The device utilization
summary of the different blocks is presented in Table I. Based
on the post implementation timing analysis and partitioning
the path into 4 key blocks, we identify a critical path delay of
3.7ns. The design consumes 4 clock cycles for the k-cell CA
‘init’ and ‘work’ cycles, and an addition 3 cycles for the
remaining blocks resulting in a total latency of 26 ns using a
270 MHz clock. It is worth noting that replacing the k-cell
CA and combinatorial logic of the encoder with the T block
consumes around 1.8ns and eliminates the need for 3 work
cycles, thereby reducing the latency to 14.8ns.
Finally, we validated the design using Synopsys Design
Compiler [16] targeting TSMC 40nm tcbn40lpbwpbc

technology [17]. Table II. presents the cell utilization and
timing summary of the decoder block (including the encoder
block). Fig. 12 presents the synthesized SaugMap block. The
critical path represents the delay from the k-cell CA output to
Eout of the full decoder block.

Figure 10. (a) Encoder k-cell CA and (b) Decoder SaugMap blocks.

Figure 11. Behavioral Simulation for Decoder Output.

Table I. Summary of the Device Utilization and post
implementation timing analysis of the different blocks (Xilinx).

FPGA component #LUTs #FF Delay (ns) Power (mW)
Encoder k-cell CA 7 7 1.597 0.05

g(Q) 3 - 1.570 16
Decoder Taug-1 8 - 1.874 47

XOR+SaugMap 25 - 3.689 84

Table II. Overall Design Synthesis on 40nm TSMC technology.
ASIC Critical Path delay 0.71ns
Levels of Logic 12
Leaf cell count 202 (151 combinatorial)
Design Area 360 μm2

Figure 12. SaugMap block synthesis using Design Compiler.

5.2 Cellular Automata Error Correction Capability
We compare the performance of CA(15, 7, 5) [13] to
BCH(15, 7, 5). We subject 1000 information messages to the
same increasing bit-error rates. We record the number of
information messages that are accurately recovered for each
of the two ECCs to measure their success rates. At low BERs
(<2%), both CAECC and BCH have a success rates of nearly
100%; i.e., all 1000 information messages were recovered
correctly. As the BER increases, the success rates of both
ECCs start to drop, with BCH having a very slight edge over
CAECC (see Fig. 13). We attribute this to few non-unique
S|Saug pairs obtained when deriving the (S|Saug) pairs
according to Taug derived in [13].

Figure 13. The decoding scheme. ‘Map Saug’ block is derived from
all permissible error vectors.

5.3 Virginia-Tech Data RO-PUF with Skip-mode CSC
Grouping analysis was carried for frequency data for 512 ROs
arranged in an array of (32, 16) ROs from the Virginia-Tech
PUF dataset chip D059546 [12]. The (1.2V, 25oC) operating
condition was used to build a 2nd order linear regression
model for randomness extraction (Fig. 14). The model was
then applied to all other test data of variable temperature and
voltage values to test the efficacy of the skip-mode approach
versus no-skip both in the presence of CAECC. Figures 15
and 16 present the number of Error bits post ECC for the no-
skip and skip modes. It is clear that for the various operating
conditions of voltage and temperature, the skip-mode
converges faster to lower bit errors in the response. Note that
we do not report the conservative skip-mode since the groups’
sizes were small enough with frequency thresholding.

Figure 14 Extracting Randomness with 2nd order model.

Figure 15. Number of information bit errors as function of the
grouping frequency threshold fth for no-skip and skip scenarios (both
with CAECC). Variable temperature Case. 1.2V Vdd.

The grouping frequency threshold fth is used to guarantee that
the frequency difference of any two ROs in a group exceeds
fth. With no thresholding, we generate 555 bits from 193 ROs
(10x18-RO groups and 1x13-RO group). As fth increases, the
chances for rank flips and hence bit error decreases; however,
also, the number of ROs satisfying the fth criteria decreases.
Thus, we require more hardware resources in terms of ROs to
generate the 555-bits. We define: (1) the normalized
hardware overhead: the ratio of the number of ROs
(nROfth>193) needed to generate the 555-bit response at a
given grouping threshold fth compared to that with no
thresholding (nRO0=193); (2) the normalized entropy as the
ratio of the corresponding number of bits generated at fth
(555) to the number of bits that would have been generated
from (nROfth) if there was no thresholding. We define the
stability fth to be the threshold beyond which a given scenario
with ECC does not result in any bit error. It is clear that the
stability fth is higher in the no-skip mode, and hence the
hardware overhead needed to reach stability fth is higher in
the no-skip scenario compared to the proposed skip-mode
scenario. We note hardware overhead to be upto 20% higher
for the no-skip versus the skip-mode (Fig. 17). We also notice
up to 23% (average 9%) entropy improvement for the skip-
mode.
6. CONCLUSIONS

An efficient implementation of (15, 7, 5) CA-ECC
targeting a Xilinx xc7z020clg484-1 device is demonstrated.
The design is also validated in a 40nm TSMC process. In
conjunction with CAECC, skip-mode CSC is proposed to
relax the number of per-block bit errors for the most probable
adjacent rank flips. This helps enhance the correction
capability and reduce stability fth. Theoretical studies as well
as grouping analysis based on RO-PUF data demonstrate

enhanced entropy and reduced hardware overhead by up to
20% for the skip-mode CSC compared to no-skip mode.

Figure 16. Number of information bit errors as function of fth for
no-skip and skip-mode (both w/ CAECC). Variable Voltage. 25C.

Figure 17 Normalized Entropy and relative % hardware overhead
for no-skip versus skip-mode measured at their respective critical fth.
Acknowledgement. The authors thank the American University of
Beirut University Research Board for supporting this work. The
authors would also like to thank Prof. Louay Bazzi for discussions.

7. REFERENCES
[1] http://www.dell.com/learn/
[2] http://www.tesla.com
[3] https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-
things-forecast-of-50-billion-devices-by-2020-is-outdated
[4] L. Hardesty, "Someone Released the Code That Turns IoT Devices into
Evil Bots", SDxCentral, 2016.
[5] Suh, G. Edward, and Srinivas Devadas. “Physical unclonable functions
for device authentication and secret key generation." 44th DAC. 2007.
[6] J. Guajardo et al., “FPGA intrinsic PUFs and their use for IP protection,"
9th Int. Worksh. Crypt. Hardw. and Emb. Syst. (CHES'07), 2007, pp. 63-80.
[7] J. Lee et al, “A technique to build a secret key in integrated circuits for
identification and authentication applications,”VLSI'04, Jun 04, pp. 176-179.
[8] C.-E. D. Yin and G. Qu, “Lisa: Maximizing ro puf’s secret extraction,”
3rd IEEE Intl Worksh on Hardw Oriented Security and Trust (HOST), 2010.
 [9] Yin, Chi-En, Gang Qu, and Q Zhou. "Design and Implementation Of A
Group-Based RO PUF". DATE 2013.
[10] Chowdhury, D. R., et al., “Design of caecc-cellular automata based error
correcting code.” IEEE Trans. on Comp: 43(6), 759-764, 1994
[11] Cho, S., Choi, U., &Heo, S., “Design of double error correcting codes
based on cellular automata” Jnl of app. Math and Comp, 21(1/2), 545, 2006.
[12] A. Maiti and P. Schaumont, “A large scale characterization of ro-puf,”
3rd IEEE Intl Worksh on Hard Oriented Security and Trust (HOST), 2010.
[13] Bohm, Christoph and Maximilian Hofer. Physical Unclonable Functions
In Theory And Practice. 1st ed. New York: Springer, 2012. Print.
[14] S.Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys.,
55, July 1983, pp. 601-644.
[15] Yin, Chi-En. A group-based ring oscillator physical unclonable
function. Thesis. University of Maryland, College Park, 2012.
[16] Synopsys Inc., Design Compiler User Guide, 2011.
[17] TSMC, TCBN40LPBWP version 120A Release Note, 2009.

