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ABSTRACT 
Physical Unclonable Functions (PUFs) present an attractive 
security primitive due to their volatile key generation capability. 
Subject to environmental conditions, the PUF response, 
however, is prone to errors which may undermine the reliability 
of the system when left unaddressed. An error-correction 
scheme is typically used alongside the PUF circuit when used for 
cryptographic applications. In this paper, we propose the use of 
Cellular-Automata Error-Correcting Codes (CAECC) due to 
their simplicity and regularity.  An efficient implementation of 
(15, 7, 5) CA-ECC encoder/decoder targeting a Xilinx Zynq-
7000 device is demonstrated, and the design is validated on 
design compiler targeting 40nm TSMC technology.  We also 
propose a skip-mode compact syndrome coding scheme for 
relaxed per-block BER. CAECC is tested in conjunction with 
the skip-mode scheme, and the approach is verified on ring 
oscillator PUF data. The skip-mode scheme is found to reduce 
the ring oscillator overhead up to 20% and enhance the entropy 
up to 23% compared to no-skip schemes.  
 

1. INTRODUCTION 
From Tesla’s smart vehicles to Dell and Intel’s telemedicine 
solutions [1, 2], the IoT industrial revolution has already 
started. With a wide span of applications, Gartner and IDC 
estimate around six to nine billion connected devices are in 
use worldwide [3]; they expect this number to explode to 20 
billion in 2020. A security breach on any of these smart 
devices can infiltrate the network and may affect millions of 
users around the world. In 2016, a distributed denial of 
service (DDoS) attack targeted the KrebsOnSecurity website. 
The malware powering the IoT botnet responsible for the 
attack was made publically available, raising the specter of 
additional attacks [4]. It is, therefore, very critical for IoT 
devices to carry out operations and communications in a 
highly secure but efficient fashion. Nearly all security models 
rely on a stored secret key which is vulnerable to invasive 
attacks. A physical unclonable function (PUF) is a circuit 
primitive that extracts secrets from physical properties of 
integrated circuits. PUFs generate volatile secret keys 
available in digital form when the chip is running making it 
very difficult to discover compared to nonvolatile keys [5].  

IC PUFs employ a variety of underlying circuit structures 
such as SRAMs, Arbiters and Ring Oscillators (RO) [5, 6, 7]. 
RO PUFs are the most popular due to their ease of 
implementation. In its most basic implementation, a response 
bit is generated by comparing the delays of a pair of ROs.  
However, RO PUFs are vulnerable to environmental 
conditions which can affect the frequency of the ROs, and 
hence the reproducibility of the response. The authors in [5] 
propose a 1-out-of-8 masking scheme that picks the slowest 
and fastest ring oscillators in each group of 8 oscillators to 
determine the bit response. This minimizes sensitivities to 
small frequency variations due to enviornment effects and 

hence enables a reliable output bit response. An entropy-
maximization technique is proposed in [8], where ROs with 
a frequency difference above a certain stability threshold are 
grouped by the longest increasing subsequence algorithm 
(LISA). The permutation of ROs in the same group is then 
mapped into bits using compact syndrome coding (CSC). 
This allows the realization of a near maximal entropy 
corresponding to a fixed number of ROs. An alternative non-
compact mapping into bits based on Kendall Syndrome 
Coding (KSC) was devised in [9] to correlate the error weight 
distribution of the resulting bit string to the underlying error 
probability distribution of the rank flips within a certain 
permutation. This would relax the error correction 
requirements at the expense of extra computational effort in 
terms of KSC implementation and the need for an entropy 
packing stage that remaps permutations compactly into bits 
after error correction. The choice of the RO frequency 
comparison technique and its stability threshold together with 
the choice of the error correction code guarantees that the 
PUF produces the same response consistently. The role of 
ECCs is stressed out in guaranteeing the PUF response 
reproducibility. In [10], Chowdhury et al. proposed a cellular 
automata (CA) based error correction code. The circuit 
structure of the CAECC is amenable to VLSI 
implementations due to its simplicity, regularity, and 
cascadability. This is compared to conventional ECCs such 
as BCH codes whose irregularity and decoding structure 
complexity increase with the number of information bits [10]. 
The authors demonstrate a single-error-correction double-
error detection Null Boundary Cellular Automata-based 
(NBCA) ECC which reduces decoding complexity compared 
to Hsiao code. Cho et al. [11] propose a double-error 
correcting code with reduced number of check-bits based on 
Periodic Boundary CA (PBCA).  

In this paper, we evaluate for the first time the CA-based 
ECC code in the context of a newly proposed skip-mode CSC 
scheme on RO PUF data obtained from [12]. The skip-mode 
scheme is proposed to relax the per-Block bit error rate in the 
event of most probable adjacent RO rank flips. We also 
evaluate the design complexity of CAECC by simulating a 
(15, 7, 5) CAECC encoder/decoder blocks using the Xilinx 
Vivado tool-suite. The paper is organized as follows. Section 
2 provides a background review on ECC for PUF, and cellular 
automata basics. Section 3 discusses the CA encoding and 
decoding algorithms. The proposed skip-mode CSC scheme 
for group-based ROPUFs is presented in Section 4. An 
efficient design of a double-error CAECC encoder and 
decoder targeting xc7z020clg484-1 FPGA used in the Zynq-
7000 ZedBoard  is presented in Section 5. This is followed by 
validation of the proposed scheme on RO PUF data. 
Conclusions follow in Section 6. 
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2. BACKGROUND REVIEW 
2.1 Error Correction for Physical Unclonable Functions 
Temperature, supply voltage and thermal noise may force a 
PUF cell to produce an erroneous output. Conventional 
methods for error correction in PUFs use XOR masking, also 
known as the code-offset construction, which performs a 
bitwise XOR of the parity information with the PUF output 
(Fig. 1) [13]. The code-offset construction steps for an n-bit 
PUF response vector r are summarized as follows.   
(1) The n-bit response r is divided into a k-bit information 
vector m and an (n-k)-bit vector c.  
(2) Upon initialization, the information vector m is fed into 
an encoder, which generates the (n-k) check-bit vector cb.  
(3) Vectors c and cb are XORed to produce the helper bits, 
which are stored in nonvolatile memory as vector h. Even 
with helper data present, the adversary still needs to guess k 
information bits to find the correct PUF response [13].  
(4) Upon deployment, the PUF response is r’ with unknown 
error vector E. Vector c’ is XORed with h.  
(5) The result, along with vector m’ (information vector from 
the second reading), is fed into the decoder, which produces 
the correct k-bit m used to build the cryptographic key; large 
keys can be derived from multiple smaller k-bit blocks.    

 
Figure 1.  Typical Error correction flow for PUF response. 
 
 

2.2 Cellular Automata 
Cellular Automata are mathematical idealizations of physical 
systems in which space and time are discrete [11, 14].  
Cellular Automata cell:  Each cell consists of a D flip-flop 
and a next-state function, which depends on the cell current 
state and that of its two neighbors according to specific rules. ݍ௜௧ାଵ ൌ ݂ሺݍ௜ିଵ௧ , ,௜௧ݍ ௜ାଵ௧ݍ ሻ  ࢚࢏ࢗ: The	state	of	the	i୲୦	cell	at	instant	t   ࢌ: Logic	function	generating	next	state	  
k-cell CA: the different next-state functions can be all 
represented by the ݇ ൈ ݇ characteristic matrix Tk. The next-
state vector of the entire CA can be obtained by multiplying 
the current-state vector by the characteristic matrix. To obtain 
the state of the CA after ‘p’ cycles, it suffices to multiply the 
current state vector by the characteristic matrix ‘p’ times. ௧݂ାଵ ൌ ܶ ൈ ௧݂  ௧݂ା௣ ൌ ܶ௣ ൈ ௧݂ ࢚ࢌ: The	current	state	vector	of	the	CA	at	instant	t ࢀ: k ൈ k	characteristic	matrix	of	the	CA 
CA ECC: The CA can be used to generate a set of codewords 
with any specified hamming distance. It is proven that a k-

cell CA with a characteristic matrix T generates a t-distance 
code if for some integer p, Tp satisfies ∀i, 0 < i < t, the bitwise 
sum of any i columns of Tp contains at least (t - i) 1’s [10]. 
 

3. CELLULAR AUTOMATA ECC  
We follow the method proposed by [11] which improves on 
the original code of Chowdhury et al., [10] by reducing the 
number of check bits needed for the same error-correction 
capability for (n, k, 5) codes. For purposes of our 
implementation, we focus on (15, 7, 5)  2-bit error correction 
codes, and the PUF response is divided into several 15-bit 
blocks each with 7 information bits. 
3.1 Encoder Design  
Fig. 2 presents the high-level scheme for check-bit 
generation. The k information bits are fed into the k-cell CA, 
which is run for 3 cycles. The resulting vector state is used as 
the input of a logic circuit g(Q) which generates the (n-k) 
check bits cb [10]. The entire encoding process is represented 
by an (n-k)×k matrix T. Multiplying the matrix by a k-bit 
information vector yields the corresponding (n-k) check bits 
[11]. The algorithm used to generate T for an (n, k, 5) CAECC 
is described in Fig. 3.  Fig. 4 presents, the k-cell CA and the 
corresponding FSM for the (15, 7, 5) encoder. 

 
Figure 2. Encoder Block. 

 

Algorithm 1: CAECC Encoder Block T 
1. Construct the kxk characteristic matrix Tk to model the k-cell 

CA according to the rules <102,102,…,102,150> 
2. Calculate Tk

3 
3. Change the (1, k)-element of Tk

3 with 1 

4. Add the matrix ቀ૚ ૙ ૚ ૙ ⋯ ૚ ૙૙ ૚ ૙ ૚ ⋯ ૚ ૚ቁ to the new matrix. 

The new matrix is labeled T’.  
5. Add the rows which don’t have 1’s at the same positions to 

obtain the matrix with the minimum number of rows which 
satisfies the following two conditions:  
a. Every column contains at least four 1’s. 
b. The sum of any number of columns is not a zero vector. 

Figure 3. Algorithm for (n, k, 5) encoder block matrix [11]. 
 

 
Figure 4. (a) FSM to run the k-cell CA 3 times. (b) k-cell CA. 



In the ’init’ state, the CE signal latches the information 
vector.  In the ‘work’ state, the CE signal latches the next state 
as computed per the CA rules. Reset signal sets the outputs of 
the k-cell to zero. Enable signal is used in conjunction with 
the clock to activate the latches during ‘init’ and ‘work’ 
states. Note that block g(Q) is derived from ௞ܶଷ and T, and 
together with the k-cell CA, they are of comparable 
complexity and perform the same function as T. 

 

3.2 Decoder  
The decoding scheme is based on an inverse transformation 
that leverages the properties of the CA. Given a new response 
r’ with unknown error E: to find E, we first calculate a 
syndrome vector S using the parity matrix H formed by 
concatenating T and an (n-k)x(n-k) identity matrix In-k as 
illustrated in eq. (1). The error vector can be derived from S 
by relying on an augmented matrix version of H, called Taug, 
the details of which are well explained in [11]. Thus, E can 
be derived uniquely using ௔ܶ௨௚ିଵ  according to eq. (2), where 
Saug is a kx1 vector whose value depends on S. To determine 
the mapping that generates Saug from S, we construct a table 
based on all permissible error vectors [10], Ep, and generate 
(S, Saug) pairs according to eq. (4). This table is mapped to a 
combinatorial logic block whose input is S and output is Saug 
and whose size increases as the number of permissible error 
vectors increase. We refer to this block as SaugMap. For 
purposes of the (15, 7, 5) code, the block maps the syndromes 
resulting from all permissible (0, 1 or 2) errors for the double-
error correcting code to Saug. The full decoding scheme is 
summarized in Fig. 5 below. 

 
Figure 5. The decoding scheme. ‘Map Saug’ block is derived from 
all permissible error vectors. 						ݎ௡ᇱ 													ൌ ሾ	݉′଴,௞ିଵ	ห	ܿ଴,௡ି௞ᇱ ൧                                             (1)  ݉ᇱ଴,..,௞ିଵ ൌ ሾ	݉଴,..,௞ିଵܧ଴,..,௞ିଵ	ሿ 
      ܿ଴,..,௡ି௞					ᇱ ൌ ሾ	ܿ଴,…,௡ି௞ܧ௞,…,௡	ሿ ݓ௡ൈଵᇱ 							ൌ ሾ݉′଴,..,௞ିଵ	ห݄ܿ଴,…,௡ି௞ᇱ ൧ ܪሺ௡ି௞ሻൈ௡ ൌ ሾ ሺܶ௡ି௞ሻൈ௞|ܫ௡ି௞ሿ 
      ܵ௡ି௞ 								ൌ ሺ௡ି௞ሻൈ௡ܪ	 ∗        ௡௫ଵ′ݓ

 E ൌ Tୟ୳୥ିଵ ൫SหSୟ୳୥൯୘                                                           (2) 							Tୟ୳୥ିଵ ൌ ൤0௞ൈ௡ି௞ ௡ି௞ܫ௞ܫ ௡ܶି௞ൈ௞൨                                                    (3) 						 ௔ܶ௨௚E୮ ൌ ൫SหSୟ୳୥൯୘                            (4) 
 

 

4. CSC WITH SKIP-MODE 
4.1 Group-based Response Vector Generation 
To generate the PUF response, the group-based technique 
compares multiple ROs at once in an attempt to enhance the 
entropy compared to the pairwise-comparison approach. For 

n ROs in a group, there are n! ways to order these ROs by 
speed. For example, suppose a group has 4 ROs {A, B, C, D} 
then there are 4! = 24 possible permutations of the ROs in this 
group. These permutations can be represented in ⌈log (݊!)⌉ 
bits. Mapping the permutation to bits is performed using CSC 
syndrome coding. This technique, has two challenges [15]. 
1) The RO groups are subject to systematic errors on the 
chip: this is often resolved via regression techniques that 
identify systematic components and extract randomness.  
2)  High number of bit errors corresponding to most 
probable adjacent–RO flips is recorded when utilizing CSC. 
For example: rank permutation ‘ADCB’ is encoded by 
‘00101’. It is possible that upon regeneration a flip occurs 
between ROA and ROD ranks, (‘DACB’) which is encoded by 
‘10011’. KSC technique was proposed in [15] to better 
correlate RO flips to bit errors, such that more probable 
adjacent RO flips would result in less bit errors. This requires, 
however, an additional KSC encoding step, ECC on a much 
longer sequence compared to CSC, and inverse KSC prior to 
converting the bits to CSC representation. In what follows, 
we propose to enhance the tolerance to the number of bit 
errors by spreading the group bits across different response 
blocks as opposed to changing the encoding scheme.  
4.2 Preliminaries  
We elaborate on a 256-bit key example to highlight the 
concept of response blocks. We also discuss numerical 
limitations of the CSC encoding scheme to explicate the 
underlying assumptions in the following sections.   
256-bit key Example and (15, 7, 5) CAECC: We use the 
PUF response to generate a 256-bit key (sk=256), and we rely 
on (n=15, k=7, t=5) CAECC to recover from possible RO 
rank flips. Accordingly, the length of the corresponding PUF 

response vector should be ݏ௥ ൌ ቒ௦ೖ௞ ቓ ∗ ݊= 555 bits to 

accommodate for the information bits and the redundancy 
bits. For purposes of error correction, the response is divided 

into 15-bit blocks whose number ݊ݏ݇ܿ݋݈ܤ ൌ ቒ௦ೖ௞ ቓ	= 37.  

CSC code limitations and a maximum number of 18-ROs 
per group: Figure 6 presents the pseudo-code for the CSC 
encoding scheme. It invokes large factorial computations 

(∑ ݅!|௚|ିଵ௜ୀଵ ), where |g| is the number of ROs in a group, (lines 
2 and 7). Due to the limited number of significant digits (15) 
in the Mantissa part of the double precision integer 
representation, large group sizes would result in factorial 
numbers that require more than 15 significant digits and thus 
cannot be represented accurately. Hence, a maximum of 18-
RO groups can be formed for accurate encoding.  
   Given:  a group g containing ordered ROs [RO1 …. RO|g|] 

CSC Encoding: outputs a CSC encoded integer cg in logଶሺ⌈|݃|!⌉ሻ bits 
1:
2:
3:
4:
5:
6:
7:
8:  

cg = 0 
for i = |g| to 2 do 
  { inv = 0 // number of inversions 
     for j=1 to (i-1) do 
           { if ROi < ROj then 
                  inv = inv + 1} 
      cg = (cg + inv) *(i - 1) } 
return cg 

Figure 6. CSC encoding scheme[15]. 



4.3 Skip-mode CSC 
In CSC, a highly probable adjacent RO rank flip can result in 
multiple bit flips within the same group. Figure 7 illustrates a 
sketch of an example CSC response vector. Assume that the 
ECC can correct a maximum of 1 bit in a 4-bit block. An RO 
rank Flip in Group 1 leads to error in bits x2 and x3. This 
results in the inability of the ECC to correct block1 in the 
Base CSC response. We propose skip-mode CSC to enhance 
error correction capability by relaxing the number of per-
Block bit fails for small codewords. This is achieved by 
distributing the group bits across the different ECC blocks 
and hence reduce the per-block BER. Figure 8 presents a 
possible way to distribute the bits of the same group across 
the different blocks. In a more conservative skip-mode CSC, 
one can restrict the maximum number of ROs per group such 
that the number of bits per group is equal or less than the 
number of ECC blocks of the target response. In this scenario, 
only one group bit appears in a block. This comes at the 
expense of entropy loss. Thus, for the 256-bit key example, 
the conservative skip-mode restricts the group size to |g|=14 
ROs: (ඃlog2ሺ |14|!ሻඇ ൌ ݏ݇ܿ݋݈ܤ݊ ൌ 37ሻ.  

 
Figure 7. Skip mode relaxes number of error bits within ECC block 
for cases of most probable adjacent RO flips. 

 To understand the effect of skip-mode on reducing per-Block 
BER, we construct 1000 replications of 555-bit responses and 
record the maximum number of bit errors per 15-bit blocks 
based on the following three scenarios: (1) The regular no-
skip scenario, (2) skip-mode scenario (18-RO groups), and 
(3) conservative skip-mode (14-RO groups). Fig. 9 presents 
the results for 1, 2, 3, and 4-adjacent RO rank flips. We note 
that the maximum number of error bits per 15-bit blocks for 
a given response reaches 12 for the no-skip CSC scenario. It 
is limited to 5 for the skip-mode, and 4 for 14-RO groups in 
the conservative skip-mode. Most importantly, for the skip-
modes, all 1-adjacent RO flips and most of 2-adjacent RO 
rank flips are limited to a maximum of 2-errors per 15-bit 
block and hence can be resolved by 2-bit error correction 
codes. It is worth noting that in the presence of environmental 
variations and as the grouping threshold increases, the group 
sizes naturally decrease, so the regular skip-mode would act 
conservatively naturally. 

Skip-mode CSC 
Given:  
Initialize:

Ω={cg1, …, cg|Ω|} // group bits as derived from CSC encoding  
ptr=ሼ1, 1, . . ሽ|ஐ| ,cnt=1, sg={|cg1|, …, |cg|Ω||} 

Build 
tmpVector

while (|Ω|)> 0) 
    for each Group i 
      { step=min(nBlocks, sg(i))  
         if (step) 
           {tmpVector(cnt:cnt+step-1)<-cgi(ptr(i):ptr(i)+step-1) 
              ptr(i)<- ptr(i)+step 
              cnt=cnt+step 
              sg(i)=sg(i)-step 
              if (sg(i)==0) 
                { ptr(i)<- null 
             Ω= Ω - cgi  }}} 

Map 
Blocks 

cnt=1 
for each Col j ∈ myWords 
    { Col j <- tmpVector (cnt: cnt+nBlocks-1) 
       cnt<-cnt +nBlocks } 

Figure 8. Skip mode pseudo-code. 
 

 
Figure 9. Maximum number of Error bits in the different modes. 
 

5. RESULTS AND ANALYSIS 
In this section, we evaluate the efficiency of the CAECC 

with skip-mode CSC on real RO PUF data. First, we present 
the CAECC encoder/decoder design. 
5.1 (15, 7, 5) CAECC Encoder/Decoder Design  
The (15, 7, 5) double error correcting CAECC encoder was 
designed using the Xilinx Vivado tool-suite and targeting the 
xc7z020clg484-1 FPGA device. Figure 10 presents the 
schematic of the encoder K-cell CA and the decoder SaugMap 
blocks respectively. Figure 11 presents the behavioral 
simulation plot when vector w’≡[m, cb]⊕E is fed to the 
decoder. For this example, w’=[010100111010101] 
corresponding to [m, cb]=[010110111011101]. The output of 
the decoder correctly identifies the corresponding error 
vector E=[000010000001000]. The device utilization 
summary of the different blocks is presented in Table I. Based 
on the post implementation timing analysis and partitioning 
the path into 4 key blocks, we identify a critical path delay of 
3.7ns. The design consumes 4 clock cycles for the k-cell CA 
‘init’ and ‘work’ cycles, and an addition 3 cycles for the 
remaining blocks resulting in a total latency of 26 ns using a 
270 MHz clock. It is worth noting that replacing the k-cell 
CA and combinatorial logic of the encoder with the T block 
consumes around 1.8ns and eliminates the need for 3 work 
cycles, thereby reducing the latency to 14.8ns.   
Finally, we validated the design using Synopsys Design 
Compiler [16] targeting TSMC 40nm tcbn40lpbwpbc 



technology [17]. Table II. presents the cell utilization and 
timing summary of the decoder block (including the encoder 
block). Fig. 12 presents the synthesized SaugMap block. The 
critical path represents the delay from the k-cell CA output to 
Eout of the full decoder block.  

 
Figure 10. (a) Encoder k-cell CA and (b) Decoder SaugMap blocks.  

 
Figure 11. Behavioral Simulation for Decoder Output.  
 
 

Table I. Summary of the Device Utilization and post 
implementation timing analysis of the different blocks (Xilinx). 

FPGA component #LUTs #FF Delay (ns) Power (mW)
Encoder k-cell CA 7 7 1.597 0.05 

g(Q) 3 - 1.570 16 
Decoder Taug-1 8 - 1.874 47 

XOR+SaugMap 25 - 3.689 84 
 
 
 

Table II. Overall Design Synthesis on 40nm TSMC technology. 
ASIC Critical Path delay  0.71ns 
Levels of Logic 12 
Leaf cell count 202 (151 combinatorial) 
Design Area 360 μm2 

 

 
Figure 12. SaugMap block synthesis using Design Compiler. 
 
 

5.2 Cellular Automata Error Correction Capability 
We compare the performance of CA(15, 7, 5) [13] to 
BCH(15, 7, 5). We subject 1000 information messages to the 
same increasing bit-error rates. We record the number of 
information messages that are accurately recovered for each 
of the two ECCs to measure their success rates. At low BERs 
(<2%), both CAECC and BCH have a success rates of nearly 
100%; i.e., all 1000 information messages were recovered 
correctly. As the BER increases, the success rates of both 
ECCs start to drop, with BCH having a very slight edge over 
CAECC (see Fig. 13). We attribute this to few non-unique 
S|Saug pairs obtained when deriving the (S|Saug) pairs 
according to Taug derived in [13].   

 
Figure 13. The decoding scheme. ‘Map Saug’ block is derived from 
all permissible error vectors. 
 
5.3 Virginia-Tech Data RO-PUF with Skip-mode CSC 
Grouping analysis was carried for frequency data for 512 ROs 
arranged in an array of (32, 16) ROs from the Virginia-Tech 
PUF dataset chip D059546 [12]. The (1.2V, 25oC) operating 
condition was used to build a 2nd order linear regression 
model for randomness extraction (Fig. 14). The model was 
then applied to all other test data of variable temperature and 
voltage values to test the efficacy of the skip-mode approach 
versus no-skip both in the presence of CAECC. Figures 15 
and 16 present the number of Error bits post ECC for the no-
skip and skip modes. It is clear that for the various operating 
conditions of voltage and temperature, the skip-mode 
converges faster to lower bit errors in the response. Note that 
we do not report the conservative skip-mode since the groups’ 
sizes were small enough with frequency thresholding.    



 
Figure 14 Extracting Randomness with 2nd order model. 

 
Figure 15. Number of information bit errors as function of the 
grouping frequency threshold fth for no-skip and skip scenarios (both 
with CAECC). Variable temperature Case. 1.2V Vdd.  
 

The grouping frequency threshold fth is used to guarantee that 
the frequency difference of any two ROs in a group exceeds 
fth. With no thresholding, we generate 555 bits from 193 ROs 
(10x18-RO groups and 1x13-RO group). As fth increases, the 
chances for rank flips and hence bit error decreases; however, 
also, the number of ROs satisfying the fth criteria decreases. 
Thus, we require more hardware resources in terms of ROs to 
generate the 555-bits. We define: (1) the normalized 
hardware overhead: the ratio of the number of ROs 
(nROfth>193) needed to generate the 555-bit response at a 
given grouping threshold fth compared to that with no 
thresholding (nRO0=193); (2) the normalized entropy as the 
ratio of the corresponding number of bits generated at fth 
(555) to the number of bits that would have been generated 
from (nROfth) if there was no thresholding. We define the 
stability fth to be the threshold beyond which a given scenario 
with ECC does not result in any bit error. It is clear that the 
stability fth is higher in the no-skip mode, and hence the 
hardware overhead needed to reach stability fth is higher in 
the no-skip scenario compared to the proposed skip-mode 
scenario. We note hardware overhead to be upto 20% higher 
for the no-skip versus the skip-mode (Fig. 17). We also notice 
up to 23% (average 9%) entropy improvement for the skip-
mode.  
6. CONCLUSIONS 

An efficient implementation of (15, 7, 5) CA-ECC 
targeting a Xilinx xc7z020clg484-1 device is demonstrated. 
The design is also validated in a 40nm TSMC process. In 
conjunction with CAECC, skip-mode CSC is proposed to 
relax the number of per-block bit errors for the most probable 
adjacent rank flips. This helps enhance the correction 
capability and reduce stability fth. Theoretical studies as well 
as grouping analysis based on RO-PUF data demonstrate 

enhanced entropy and reduced hardware overhead by up to 
20% for the skip-mode CSC compared to no-skip mode.  

 
Figure 16. Number of information bit errors as function of fth for 
no-skip and skip-mode (both w/ CAECC). Variable Voltage. 25C.  

 
Figure 17 Normalized Entropy and relative % hardware overhead 
for no-skip versus skip-mode measured at their respective critical fth.  
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