
 

Low Cost and Pow er CNN/Deep Learning Solution for Automated Driving 
 

Mihir Mody, Desappan Kumar, Pramod Swami, Manu Mathew and Soyeb Nagori 

Automotive Processor, Texas Instruments Incorporated, Bangalore, India 

E-mail: {mihir, kumar.desappan, pramods, mathew.manu, soyeb}@ti.com 

 

Abstract 
Automated driving functions, like highway driving and 

parking assist, are increasingly getting deployed in high-end 

cars with the ultimate goal of realizing self-driving car using 

Deep learning techniques like convolution neural network 

(CNN). For mass-market deployment, the embedded 

solution is required to address the right cost and performance 

envelope along with security and safety.   In the case of 

automated driving, one of the key functionality is "finding 

drivable free space", which is addressed using deep learning 

techniques like CNN.  These CNN networks pose huge 

computing requirements in terms of hundreds of 

GOPS/TOPS (Giga or Tera operations per second), which 

seems beyond the capability of today's embedded SoC.  This 

paper covers various techniques consisting of fixed-point 

conversion, sparse multiplication, fusing of layers and 

network pruning, for tailoring on the embedded solution. 

These techniques are implemented on the device by means 

of optimized Deep learning library for inference. The paper 

concludes by demonstrating the results of a CNN network 

running in real time on TI’s TDA2X embedded platform 

producing a high-quality drivable space output for 

automated driving. 

 

Keywords 
Automated Driving, Deep Learning, CNN, semantic 

segmentation, TDA processor 

1. Introduction 
Automated driving functions, like highway driving and 

parking assist, are increasing getting deployed in high-end 

cars with the ultimate goal of realizing self-driving car. To 

help the evolution of these functions various level (1-5) are 

defined by automotive standardization organizations [1].    

Figure 2 shows the logical block diagram of automated 

driving functions. The key blocks for automated driving are 

Perception, Localization, Fusion, Driving Policy, Motion 

Planning, and Control. The multi-modality perception 

(Camera, radar, and Lidar) is used to gather environment 

information around the vehicle.  Fusion module is used give 

most reliable environment (e.g. Bayesian filtering) among all 

modalities. The localization module is used to find the exact 

position of the vehicle in real-world co-ordinates using HD 

Maps and perception data. The resulting environment model 

is used by Driving Policy module to take decision e.g. stay in 

lane, lane change, yield, merge etc.  The decision of Driving 

policy module is translated into actual car movement with 

Motion planning module accounting kinematics and 

passenger's comfort.  Lastly, control (e.g. PID Control) is 

used to track actual vehicle trajectory with reference by 

controlling actuators.  The Deep learning techniques 

consisting of Convolution Neural Network (CNN), 

Recurrent Neural networks (RNN), Deep Reinforcement 

learning (DRL) are used extensively across all modules to 

achieve the goal of the self-driving car.   It is the de-facto 

method for camera perception module, while is used along 

with traditional computer vision and machine learning 

algorithms to enhance performance.   

Typical Convolution Neural Network (CNN) structure is 

illustrated as shown in Figure 1.  Input feature vectors are 

convolved with a set of pre-trained receptive field weights 

followed by a non-linear activation function. Max-pooling 

enables translation invariance and reduces the output feature 

vector size. The learned output feature vector is fed to the 

fully connected neural network for classification, with 

Softmax layer normalizes the results. There are multiple 

network topologies e.g. AlexNet[2], VGGNet[3], GoogleNet 

etc[4].  These networks have multiple convolution layers and 

fully connected layers, which results in huge compute 

complexity going in hundreds of Giga or Tera Multiply and 

Add operations (GOPS or TOPS) with 2D convolution 

function taking more than 95% of the overall computation.  

These network architectures have evolved without regard to 

model complexity and computational efficiency. On the 

other hand, successful deployment of CNNs on embedded 

platforms requires small model sizes to accommodate 

limited on-device memory and real-time execution with 

minimal accuracy loss. 

 

 

Figure 1 A typical Convolution Neural Network with two convolution 

layers and fully connected layer followed by softmax. 

 

The section 2 gives the overview of various techniques 

to optimize CNN on the embedded platform.  The section 3 

deep dives into exact mapping and usage for free space 

detection using semantic segmentation algorithm on Texas 

Instrument’s TDA2 [14]  automotive processor.  The Section 

4 gives details of experiments and results with section 5 

concluding the paper. 

978-1-5386-1214-9/18/$31.00 ©2018 IEEE                             432                   19th Int'l Symposium on Quality Electronic Design




 

La
ti

tu
de

 C
on

tr
ol

, 
Lo

ng
it

ud
e 

Co
nt

ro
l

Driving Policy 

Fusion

Localization
(where am I)

Mission Planning

Motion Planning

Tr
aj

ec
to

ry
 C

on
tr

ol
 

Camera 

Perception

Radar

Perception

Lidar

Perception

Env.
Model

State M/C

Reinforce Learning

Deep Learning

Route 
Planning

Path Planning

Trajectory Planning

Maneuver Planning

Raw data
(e.g. DL/DRL)

Object List ,
Location (distance, angle, 
velocity)
Drivable Space

GPSIMU HDMap

Mid level
Fusion

Connectivity
(V2X, 5G..)

Driver 

Monitoring 
(Below L5)  

Figure 2 Automated Driving Block Diagram 

 

2. Techniques for Embedded Platform 
This paper covers various techniques consisting of 

fixed-point conversion, sparse multiplication, fusing of 

layers and network pruning, to enable low cost embedded 

solution.  

2.1 Fixed Point CNN Inference 
Successful deployment of CNNs on embedded platforms 

requires small model sizes to accommodate limited on-

device memory and real-time execution. This has led to a 

growing field of research that focuses on quantized CNN 

inference for embedded devices having limited resources 

with minimal accuracy losses. The CNN quantization 

methods in general fall into two categories namely 

Training/Fine-tuning CNN models accounting quantization 

[5, 6, 8, 9] process and Quantized CNN inference with off-

line floating point to fixed point conversion [7, 10, 11].  

2.1.1 Training/Fine-tuning CNN model 
This method accounts quantization during the training 

process on PC. The entire training can be performed using 

fixed point representation or quantized training can be 

performed as an additional fine-tuning step after initial 

training with the floating point representation. In both the 

cases, the final trained model contains information for 

quantized inference. This information includes the fixed 

point bit-depth for each layers weights and activation. In 

most cases, the bit-depth for weights are selected based on 

the actual range in each layer, but the bit-depth for 

activations (inputs and outputs) are selected empirically 

based on the observation during training. During deployment 

on the embedded platform, the framework has to understand 

the information in these models and implement the 

corresponding quantization scheme. This method is not 

scalable for the embedded platform, as the deployment 

framework has to support models trained by multiple 

frameworks like Caffe, TensorFlow etc. This approach 

doesn't address ‘transfer learning' which is gaining 

popularity due to quick deployment using pre-trained 

floating point models.  

2.1.2 Quantized CNN Inference with Pre-trained 

model 
In this method, the Pre-trained floating point model is 

converted to fixed point representation and the inference is 

performed using fixed point computation. This method does 

not require any re-training or fine-tuning avoiding the need 

for quantization support in the training frameworks. Models 

parameters (weights) are converted to fixed point 

representation as an offline step with fixed scale for entire 

inference process.  

In both the methods the activations (inputs and outputs) 

are converted to lower bit-depth representation during every 

input inference process. For example, when 8-bit weights 

and 8-bit input activations are used for a convolution layer 

then the output accumulator can grow to 24-bit to 32-bit 

based on the convolution kernel and input activation. 

The scale factor used converting this 32-bit accumulator 

to 8-bit representation for a given layer can be fixed for all 

the inference process or it can be dynamically selected for 

each inference process. The dynamic scale factor can be 

selected based on the actual range of accumulator (minimum 

and maximum value) in given layer during each input 

inference process. Utilizing the actual range for dynamic 

scale factor selection minimizes accuracy loss by reducing 

quantization error in each layer.  

 

 



 

2.2 Layer Fusion 
The most compute complexity in a CNN application is 

contributed by convolution layers and rest of layers in the 

network would need small compute. The data accesses from 

the memory for all the layers are similar. For example, a 3x3 

convolution layer on 256 input channels feature generating 

256 channel outputs would need 4608 Operations compute 

per output feature. A max pool layer with similar input and 

output channels would need 9 operations per output. An 

element-wise layer with 2 input tensors would need 1 

operation per output feature. With the SIMD features 

available on the modern CPUs, the number of operation that 

can be performed on single CPU cycle is normally high. 

Except for the convolution layer, most of the other layer in a 

CNN application will be data bound layers. So it is 

important to fuse these layers with convolution layers when 

it is possible to utilize the compute capability of the device 

effectively. For example, max pooling will be performed on 

convolution layer on most network structure; so the max 

pooling operation can be performed after convolution 

operation on the internal memory. Similarly, element-wise 

addition (Residual connection in ResNet) also can be 

combined with convolution.  

 

 
Figure 3 Vertical layer Fusion (Store Path) 

 
Similar to an above mentioned external memory 

bandwidth reduction in store path (vertical fusion) as shown 

in Figure 3, the load path bandwidth can be reduced by 

processing multiple layers together when all of them use 

same input tensor. In case of Inception module in googleNet 

has multiple convolution layers and polling layers, which 

uses same input (horizontal Fusion).  This enables a tile of 

input features that can be loaded once from external memory 

into the internal memory with in parallel reducing input data 

load bandwidth as shown in Figure 4.   

The usage of horizontal and vertical fusion enables the 

external memory bandwidth reduction as well as the better 

resource/compute utilization. 

2.3 Sparse Convolution 
The complexity of the overall network should be 

restricted such that it fits well within the computing 

capability of the targeted device. Typically, the convolution 

layers are the most computationally intense and will 

determine how fast the inference runs-so it is important to 

reduce the complexity of convolution layers. Embedded 

inference can implement sparse convolution, which can 

execute the inference much faster when there are a lot of 

zero coefficients. Using sparse convolution algorithms 

eliminates the need for multiplications whenever the weights 

are zeros. Sparse training methods can induce 80 percent or 

more sparsity in most convolution layers - in other words, 

making 80 percent of the convolution weights zero. We have 

observed a 4 times execution speed increase when nearly 80 

percent of the weights in the convolution layers are zeros. 

The figure 5 shows high-level control flow of convolution 

layer implementation to take advantage of zero coefficients 

in convolutions.  A block multiply accumulation operation is 

performed on input channel if the kernel co-efficient is non 

zero [9]. 

 
Figure 4 Horizontal layer Fusion (Load Path) 

 
Note that the block size can be chosen appropriately to 

suite the local memory or data cache available in the system. 

In that case, the whole image will have to be split into 

several blocks aka ROIs (Region Of Interest). 

 

 
Figure 5 Sparse Convolution Control Flow 

 

3. Proposed Free-Space Detection Application  
Embedded friendly CNN network is developed for Free-

Space Detection Application, which enables the car to 

decide the drivable path.  The following sub-section explains 

network details and later sub-section explains optimized 

inference engine on TI’s TDA family of automotive 

processor. 

3.1 Network configuration 
The base classification network was inspired by ResNet10 

[12]. The ResNet10 network architecture was modified with 

the following changes.  

 Residual connections are removed since it doesn’t help 

much at small depths such as 10 as observed in the 

original ResNet paper[12]. Added groups of 4 to every 



 

alternate layer to reduce complexity. Grouped 

convolutions also help in data bandwidth reduction.  

 Max pooling is used instead of strides. This base 

network is used to train on the 1000 class ImageNet 

dataset. 

 The proposed network has additional decoder layers 

(using deconvolution layers) on top of the base network 

to enable free space detection.  

 The proposed network is trained for Cityscapes [13] 

dataset using the pre-trained weights. 

 The proposed network is known as ‘JSegNet21’, since it 

has 21 convolutional and deconvolution layers. Most of 

the complexity of this network is concentrated in layers 

13 and 14 because the Max pool stride before these 

layers is removed. Further details are given in Table 1. 
 

Table 1 Layer structure of JSegNet21 segmentation network 

 

Layer type 

 

Input 

Layer 

No 

 

Output 

Channels 

 

Kernel Size, Stride, 

Group, Dilation 

 

Laye

r No 

 

1 Conv,Relu  32 5,2,1,1 

2 Conv,Relu  32 3,1,4,1 

3 Maxpool   2,2,-,- 

4 Conv,Relu  64 3,1,1,1 

5 Conv,Relu  64 3,1,4,1 

6 Maxpool   2,2,-,- 

7 Conv,Relu  128 3,1,1,1 

8 Conv,Relu  128 3,1,4,1 

9 Maxpool   2,2,-,- 

10 Conv,Relu  256 3,1,1,1 

11 Conv,Relu  256 3,1,4,1 

12 Maxpool   1,1,-,- 

13 Conv,Relu  512 3,1,1,2 

14 Conv,Relu  512 3,1,4,2 

15 Conv,Relu 14 64 3,1,2,4 

16 Deconv  64 4,2,64,- 

17 Conv,Relu 8 64 3,1,2,1 

18 Eltwise 16,17   

19 Conv,Relu  64 3,1,1,1 

20 Conv,Relu  64 3,1,1,4 

21 Conv,Relu  64 3,1,1,4 

22 Conv,Relu  64 3,1,1,4 

23 Conv,Relu  8 3,1,1,1 

24 Deconv  8 4,2,8,- 

25 Deconv  8 4,2,8,- 

26 Deconv  8 4,2,8,- 

27 Argmax    

3.2 TI Deep learning Framework 

 
Figure 6 TI Deep learning Library suit 

 

TI’s Deep Learning library (TIDL) framework is 

optimized inference engine to accelerate CNN inference on 

TI TDA devices as shown in figure 6. TIDL does not 

address the training of deep-learning models, which the 

popular deep learning frameworks can best handle. Instead, 

TIDL addresses the inference part of deep learning, using a 

trained model from a supported network and running it at a 

very high speed on a supported low-power embedded 

processor like one from the TI TDA family. The TI device 

translator tool enables development on open frameworks and 

provides push-button PC-to-embedded porting. TIDL 

abstracts embedded development, provides high-efficiency 

implementation and is platform scalable. Features As we 

discussed, the purpose of TIDL is to enable ease of use and 

provide optimized inference. Ease of use is achieved by 

providing a way to use the trained network models in the 

TIDL library. Thus, one primary feature is that TIDL can 

understand the trained output of popular frameworks. TIDL 

has achieved optimized inference through software 

optimizations that enable it to use the underlying hardware 

resources optimally and through algorithmic simplifications, 

such as sparse convolutions, fixed-point computation, layer 

fusion etc. to reduce the inference time required for CNN. 

4. Experiments and Results 
The proposed embedded techniques were implemented on 

the TDA2x SoC from Texas instruments [14]. It is a low 

power SoC that operates in single digit Watts of power.  It 

has 4 Embedded Vision Engines (EVEs), which are co-

processors suited for computer vision applications.  

4.1 Accuracy benchmarking 
Table 2 summarizes change in accuracy due to 

sparsification and quantization techniques discussed in 

section 2. It is seen that the pixel accuracy loss is almost 

negligible and the change in Mean IOU loss is reasonable. 

Sample images are shown indicating example segmentations 

in Figure 7. 
Table 2 Impact of sparsification and quantization, for semantic 

segmentation on the Cityscapes dataset 

Configuration 

80% sparsity induction 

Pixel Accuracy 

(%) 

Mean IOU 

(%) 

Initial L2 regularized training 96.20 83.23 

L1 regularized fine tuning 96.32 83.94 

Sparse, fine tuned 96.10 82.86 

Sparse, Quantized (8-bit dynamic fixed 

point) 

95.90 82.15 

Overall impact due to sparsification  

and quantization 

-0.42 -1.79 

 

 
Figure 7 Sample input images and the segmentation produced using sparse 

(80%), quantize 



 

4.2 Inference latency on device 
Table 3 compares the complexity of the original and its 

corresponding sparse form for ‘JSegNet21’ CNN model. It 

captures the actual Giga MACS and Giga Cycles 

measurements from TDA2x SoC for inferring the free space 

detection of one frame of size 1024x512 and number of. 

frames achieved per Second. Without utilizing sparsity the 

FPS that can be achieved is 5.14. As shown in table 3, the 

performance speed up is factor of 3.93x by using sparse 

convolution. 

  
Table 3 Measurements from TDA2x SoC for inferring semantic 

segmentation of an image of 1024x512 resolution 

Inference 

method 

 

Configuration 

for inference 

 

Giga 

Macs 

Giga 

Cycles 

Time 

(Milli-

Seconds) 

Frames 

Per 

Second 

Dense 
Without utilizing 

sparsity  
8.843 0.700 194.44 5.14 

Sparse 

L2 regularized 

trained 
8.163 0.653 181.39 5.51 

L1 regularized 

trained 
3.264 0.299 83.06 12.04 

Sparsity induced 

at 80% 
1.540 0.188 52.22 20.22 

 

5. Conclusion 
Mass deployment of self-driving technology requires a 

CNN solution, which is low cost and power optimized 

inference on the embedded platform. The paper introduces 

multiple embedded techniques namely fixed-point 

quantization, network optimization, and sparse convolution. 

These embedded techniques were implemented in TI’s Deep 

learning library for CNN acceleration on TI’s TDAx family 

of automotive processors. These techniques enable the real-

time demonstration of free space detection with 

improvement in the inference performance by factor of four 

with minimal accuracy loss. 

6. References 
 
[1] Society of Automotive Engineers. https://www.sae.org/ 

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet 

classification with deep convolutional neural networks. In Advances 

in neural information processing systems, pages 1097–1105, 2012) 

[3] K. Simonyan and A. Zisserman. Very deep convolutional networks 

for large-scale image recognition. arXiv preprint 

arXiv:1409.1556,2014 

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,D. Anguelov, D. 

Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with 

convolutions. In Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition, pages 1–9, 2015. 

[5] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, 

Matthew Tang, Andrew Howard, Hartwig Adam, Dmitry 

Kalenichenko. Quantization and Training of Neural Networks for 

Efficient Integer-Arithmetic-Only Inference.  arXiv:1712.05877, 

2017 

[6] Philipp Gysel, Mohammad Motamedi & Soheil Ghiasi. Hardware-

oriented approximation of convolutional neural networks. 

arXiv:1604.03168,2016 

[7] Lin, D., Talathi, S., and Annapureddy, S. Fixed Point Quantization 

of Deep Convolutional Networks. arXiv:1511.06393, 2015. 

[8] Matthieu Courbariaux & Jean-Pierre David. Training deep neural 

networks with low precision multiplications. ICLR 2015 

[9] Manu Mathew, Kumar Desappan, Pramod Kumar Swami, Soyeb 

Nagori. Sparse, Quantized, Full Frame CNN for Low Power 

Embedded Devices. CVPR workshop paper, 2017. 

 [10] Pete Warden. How to Quantize Neural Networks with 

TensorFlow.https://petewarden.com/2016/05/03/how-to-quantize-

neural-networks-with-tensorflow/  2016. 

[11] Manu Mathew, Kumar Desappan, Pramod Kumar Swami, Soyeb 

Nagori. Sparse, Biju Moothedath Gopinath, Embedded low-power 

deep learning with TIDL. 

http://www.ti.com/lit/wp/spry314/spry314.pdf 

[12] Kaiming He Xiangyu Zhang Shaoqing Ren Jian Sun, Deep Residual 

Learning for Image Recognition, CVPR, 2016. 

[13] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. 

Benenson, U. Franke, S. Roth, and B. Schiele, "The Cityscapes 

Dataset for Semantic Urban Scene Understanding," in Proc. of the 

IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 2016. 

[14] TDAx ADAS SoCs, 

http://www.ti.com/lsds/ti/processors/dsp/automotive_processors/tda

x_adas_socs/overview.page 

 

 

 

 

 

 


