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Abstract—Due to the fast growing industry of smart cars and
autonomous driving, advanced driver assistance systems (ADAS)
with its applications have attracted a lot of attention. As a
crucial part of ADAS, obstacle detection has been challenge due
to the real-tme and resource-constraint requirements. Cellular
neural network (CeNN) has been popular for obstacle detection,
however suffers from high computation complexity. In this paper
we propose a compressed CeNN framework for real-time ADAS
obstacle detection in embedded FPGAs. Particularly, parameter
quantizaion is adopted. Parameter quantization quantizes the
numbers in CeNN templates to powers of two, so that complex
and expensive multiplications can be converted to simple and
cheap shift operations, which only require a minimum number
of registers and LEs. Experimental results on FPGAs show that
our approach can significantly improve the resource utilization,
and as a direct consequence a speedup up to 7.8x can be achieved
with no performance loss compared with the state-of-the-art
implementations.

I. INTRODUCTION

With the fast-growing smart vehicle industry, advanced
driver assistance system (ADAS) has attracted a lot of attention
in recent years, in which obstacle detection is one of the most
significant modules. However, most commercially available
solutions for obstacle detection, e.g., LIDAR [1] and cellular
neural networks (CeNN), are expensive and computational-
ly intensive [5]. While embedded systems on vehicles are
typically constrained by computation capacity and energy.
Considering the safety and security requirement, the real-time
processing of obstacle detection on vehicles is preferred.

A very powerful tool for obstacle detection is cellular
neural network (CeNN), which can achieve very high accu-
racy through proper training. It should be noted that CeNNs
are popular in image processing areas such as classification
[3], segmentation [4], while convolutional Neural Networks
(CNNs) are most powerful in classification related tasks.
However, due to the complex nature of segmentation and other
image process tasks and the associated real-time requirements
in many applications, hardware implementations of CeNNs
have remained an active research topic in the literature.

As analog implementation of CeNNs are typically bounded
by limited data precision and small supported image size [14],
digital implementations of CeNNs have been proposed [17],
where data is quantized with approximation. Tens to hundreds
of iterations are needed in the discretized process and as a
result, the computational complexity of digital CeNNs is very
high. For example, to process an image of 1920x1080 pixels

requires 4-8 Giga operations (for 3×3 templates and 50-100
iterations), which needs to be done in a timely manner for
real-time image processing.

To tackle the computation challenge, CeNN accelerations on
digital platforms such as ASICs [8][9], GPUs [13] and FPGAs
[2][12] [10][18][19] [11] have been explored, with FPGA
among the most popular choices due to its high flexibility and
low time-to-market. The work [2] presented a baseline design
with several applications, while the study [12] took advantage
of reconfigurable computing for CeNNs. Recently, the CeNN
implementation for binary images was demonstrated [11].
Expandable and pipelined implementations were achieved on
multiple FPGAs [10]. Taking advantage of the structure in
[10], the work [18] implemented a high throughput real-time
video streaming system, which is further improved to be a
complete system for video processing [19]. All the three works
share the same architecture for CeNN computation. Due to
the large number of multiplications needed in CeNNs, the
limited number of embedded multipliers in an FPGA become
the bottleneck for further improvement. For example, in work
[10] 95%-100% of the embedded multipliers are used. On the
other hand, it is interesting to note that the utilization rates
of LEs and registers are only 5% and 2%, respectively, which
is natural to expect as not many logic operations are needed.
However, in a mainstream FPGA, LEs and registers count for
significantly larger portion of the total programmable resources
than embedded multipliers. For example, LEs and registers
occupy 95.4% of the core area while embedded multipliers
only 4.6% for a EP3LS340 FPGA [16]. Such an unbalanced
resource utilization apparently cannot attain the best possible
speed of the CeNN being implemented, and an improved
strategy is strongly desired.

In this paper we present a compressed CeNN framework for
real-time ADAS obstacle detection. Particularly, we systemat-
ically put forward powers-of-two based incremental quantiza-
tion of CeNNs for efficient hardware implementation. The in-
cremental quantization contains iterative procedures including
parameter partition, parameter quantization, and re-training.
We propose five different strategies including random strategy,
pruning inspired strategy, weighted pruning inspired strategy,
nearest neighbor strategy, and weighted nearest neighbor strat-
egy. Experimental results show that our approach can achieve
a speedup up to 7.8x with no performance loss compared with
the state-of-the-art FPGA solutions for CeNNs.
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II. COMPRESSED CENN FRAMEWORK AND HARDWARE
IMPLEMENTATION

A. Incremental Quantization

The proposed incremental quantization framework is an
iterative process as shown in Figure 1. Each iteration com-
pletes three tasks: parameter partition, parameter quantization,
and incremental re-training. We assume that as a starting
point, we have all parameters in the original templates before
quantization well trained.

1) Parameter partition: This task selects a subset of param-
eters not yet quantized (un-quantized parameters) to perform
quantization. Two knobs exist in this task: parameter priority
and batch size. For the first knob, the pruning-inspired (PI)
strategy has been well explored in quantization of CNNs
[20], based on the consideration that weights with larger
magnitudes contribute more to the result and thus should be
quantized first. However, the parameters in CeNNs have some
unique characteristics that some parameters are coupled. In
order to tackle the problem, we propose a nearest neighbor
(NN) strategy and a weighting method for the first knob.
The combined weighted nearest neighbor algorithm takes the
number that a parameter appears in the template, defined as its
repetition quantity (rq) as the reciprocal of the weight, and uses
the difference between the parameter and its nearest power-of-
two as distance to perform a weighted NN algorithm (WNN).
Other combinations such as weighted pruning-inspired (WPI)
strategy adopt the same weighting method but with PI to form
WPI. A total of five strategies PI, WPI, NN (WNN with all
weights set to 1), WNN and a random strategy (RAN) are
compared in the experimental section.

For the second knob, batch size is the number of parameters
selected in each iteration, which will affect re-training speed
and quality. We propose to use two batch sizes, constant and
log-scale. The former selects the same number of parameters
in each iteration, while the latter picks a fixed percentage from
the remaining un-quantized parameters, rounded to the nearest
integer. Compared with constant batch size, log-scale batch
size quantizes more parameters in the first several iterations
and fewer towards the end.

2) Parameter quantization: Suppose the quantization set is
designed as depicted in Equation 1, where k and m indicate
the range of quantization. The corresponding bit width bw is
calculated as shown in Equation 2, where the extra one bit is
the sign bit.

qs = {±(2k, ., 2p, ., 2m), 0}, k ≤ p ≤ m, p, k,m ∈ Z. (1)

bw = Ceiling[log2(2× (m− k + 1) + 1)] + 1. (2)

With the quantization set, a parameter uq(i) is quantized as
shown in Equation 3. When the absolute value of a parameter
is smaller than 2−k−1, it will become zero after quantization
and get pruned. Lower bit width can prune more parameters,
at the cost of accuracy loss.

uq(i) =


2p if 3× 2p−2 ≤ |uq(i)| < 3× 2p−1;

k ≤ p ≤ m;

2m if |uq(i)| ≥ 2m;

0 if |uq(i)| < 2−k−1.

(3)

3) Incremental Re-training Algorithm: Usually, re-training
algorithm is an optimal problem as shown in Equation 4, where
P is the set of all the parameters. In incremental re-training
algorithm, the optimal problem is revised as shown in Equation
5, where U and Q are the sets of un-quantized and quantized
parameters, respectively. ai and bi are the lower and upper
bounds for both Pi and Ui, respectively. Note that P = Q∪U ,
and U ∩ Q = Ø. In each iteration, a subset of U will be
quantized and added to Q.

f = min obj(P ), s.t. Pi ∈ [ai, bi], 0 ≤ i ≤ |P |. (4)

f = min obj(U,Q), s.t.Ui ∈ [ai, bi], 0 ≤ i ≤ |U |. (5)

Q will be fixed during the re-training process and only U
is used for space searching. After multiple iterations, all the
required parameters are quantized. It should be noted that the
bias in CeNN computation is not required to be quantized as it
is not involved in multiplication. Therefore, another re-training
iteration is required for the optimal bias when all the required
parameters are quantized.

B. Efficient Hardware Implementations

We base our work on the state-of-the-art FPGA CeNN
implementations [10][18][19], which is expandable, highly
parallel and pipelined. The basic element of the architec-
ture is the stage module which handles all the processes
in one iteration of CeNN computation for 1 ≤ i ≤ M ,
1 ≤ j ≤ N . Multiple stages are connected sequentially for
multiple iterations to form a layer, which processes the input
in a pipelined manner. Furthermore, multiple layers can be
connected sequentially for more complex processing or be
distributed in parallel for a higher throughput. Note that First
In First Out (FIFO) are used between adjacent stages to store
the temporary results of each stage (or each iteration), and
they are configured as single-input multiple-output memories.
Please refer to FPGA implementations in [10][18] for more
details.

Our efficient hardware implementation focuses on the opti-
mization of the stage design as shown in Figure 2. Two opti-
mizations are performed: multiplication simplification and data
movement optimization. First, with incremental quantization,
simplification can be achieved by replacing multiplications
with shift operations. The detailed hardware implementation
will be discussed in the following section. Second, when
FPGA resource is extremely limited (e.g. for low-end FP-
GAs), data movement optimization can be performed utilizing
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Fig. 2. Architecture of the optimized stage design.
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Fig. 3. Training image and the manually detected image taken from [5].

the sparsity and repetition in CeNN templates. In fact, in
many applications CeNN templates naturally involves zero
or repeated parameters. With incremental quantization, more
zeros are yielded leading to higher sparsity and the small
quantization set introduces a larger number of repetitions.
Data movement optimization can minimize the number of
computations needed.

The optimized stage can be configured for both time-
invariant templates and time-variant templates. Note that
the FPGA implementation [18] is dedicated to CeNN with
time-invariant templates, while [10] is for time-variant. The
TimeV ariant part in Figure 2 is specific for time-variant
templates, and can be eliminated in the configuration for time-
invariant ones.

1) Shifter Module: In Figure 2, shifter S1 is for multiplica-
tions in CeNNs and S2 is for discrete approximation involved
with ∆t in CeNN computation. Usually ∆t is very small, and
the hardware implementation of S2 in this paper is designed
to support ∆t=2s, where −7 ≤ s ≤ 0, s ∈ Z. Note that when
∆t is configured to 20 or 1, the computation is transformed
to discrete CeNN [6].

2) Data Scheduler Module: Data scheduler module exploits
the sparsity and repetition of parameters in CeNN templates.
Ignoring multiplications with zeros will give a significant
improvement in efficiency as a majority of templates have zero
values.

III. EXPERIMENTS

In this section, we first evaluate the performance of various
incremental quantization strategies discussed in Section II for
obstacle detection. Then we implement the quantized CeNNs
on FPGAs and compare their speed with state-of-the-art works.

A. Performance Evaluation

1) Experimental Setup: For incremental quantization, a
total of 10 incremental quantization strategies are evaluated:
five partition strategies (RAN, PI, WPI, NN (WNN with all
weights set to 1), and WNN) in combination with two batch
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Fig. 4. Performance comparison between templates with various (a) strategies
and (b) quantization sizes m for obstacle detection.

sizes (constant and log-scale). For compact presentation, we
use postfix -C and -L to denote constant and log-scale batch
sizes, respectively. For constant batch size, we set the size to
20% of the total parameters. While for log-scale batch size,
we set it to half of the remaining un-quantized parameters. We
discuss five quantization set sizes with m =0, 1, 2, 3, 4 and
k = −m (see Equation 1).

We also adopts the objective function as accuracy
to evaluate the quality of output images. The pattern
structures of the 3×3 templates A and B are as fol-
lows: A = {a0, a0, a0; a0, a1, a0; a0, a0, a0}, and B =
{a2, a2, a2; a2, a3, a2; a2, a2, a2}. The training dataset is from
[5] as shown in Figure 3, which is the of the same configura-
tion with the work [15]. For test dataset, totally 40 test images
are selected from Hlevkin test images collection [7].

obj = accuracy =
t∑

i=1

abs(outputi − IdealOutputi)/area.

(6)
2) Results and Discussion: We fix the quantization size

using m = 2 and k = −m, and evaluate all 10 incremental
quantization frameworks. The results are depicted in Figure
4(a). From the figure we can observe that the quantized
templates achieve similar accuracy compared with the original
template without quantization. The lowest accuracy is about
15% lower than that with the original templates. Interestingly,
the highest accuracy is achieved with WNN-C strategy, which
is only 3% lower than that of the original templates. Note
that generally PI strategy achieves the best performance for
CNNs [20]. However, WNN strategy obtains the best perfor-
mance for CeNN, and NN strategy also obtains a comparable
performance. Furthermore, NN and WNN strategy are much
stable than PI as NN and WNN can achieve almost the
same accuracy for constant and logscale batch sizes while PI
not. Even random strategy can have a better accuracy than
PI in some configurations. In terms of batch size, constant
seems to perform better than log-scale in most cases. The
impact of batch sizes is presented in Figure 4(b) with the
optimal partition WNN-C. The quantization set size has an
interesting relationship with the performance. First, even when
the quantization set is only of three values (-1, 0, 1), the
quantized template can still achieve high accuracy. Second,
there exists an optimal m which gives the best performance
and m=3 for obstacle detection. Further increasing m will not
provide any performance gain.



TABLE I
SPEED AND RESOURCE UTILIZATION COMPARISONS OF THE

STATE-OF-THE-ART WORK [19] AND OURS WITH NINE
MULTIPLIERS/SHIFTERS IN 2D CONVOLUTION MODULE. THE NUMBERS IN

THE BRACKETS ARE THE RESOURCE UTILIZATION RATE.
IMPLEMENTATION VC7VX-

980T
VC7VX-

585T
STRATIX

V E
STRATIX

V GS
# OF STAGES 352 179 233 291
LES(×103) 780(80%) 465(80%) 718(80%) 524(80%)

REGISTERS(×103) 170(17%) 93(16%) 133(15%) 128(19%)
EMBEDDED MULT. 3600(100%) 1260(100%) 704(100%) 3926(100%)

SPEEDUP 2.3x 3.3x 7.8x 1.7x

B. Speed Evaluation Using FPGAs

In previous section we have evaluated the performance
of our compressed CeNN framework in terms of accuracy.
In this section we will evaluate its speed when implement-
ed in FPGAs. For a fair comparison with existing works
[10][18][19], we adopt the same configurations of stages and
try to place the maximum possible number of stages utilizing
our quantized templates. Note that all the three works share the
same architecture for CeNN computation. The performance
of the implementation is evaluated by equivalent computing
capacity which is the product of number of stages and the
computing capacity of each stage. The proposed efficient
hardware implementation is implemented on an XC4LX25
FPGA. The data width of the input, state, and output (u, x, and
y) is configured to be 18 bits. The widely-used template size
3×3 is adopted. Note that general CeNN is adopted for the
FPGA implementation, and delayed CeNN is not considered
here. Time-variant templates are configured. In the implemen-
tation, multiplication is achieved with embedded multipliers
(more specifically, DSP48 modules on XC4LX25 FPGAs) at
first, and shifters are used when there are no more available
embedded multipliers. Considering the routability of FPGAs,
the utilization rate of LEs and registers are constrained to be
no higher than 80%. Note that since different quantization
frameworks only affects the performance and do not show
significant difference in hardware resource utilization, in this
part of experiments we simply use WNN-L with m=5 and k=-
5, and other frameworks should yield almost identical speed.

We select four high-end FPGAs from Altera and Xilinx with
about 500,000 to 1,000,000 LEs, and there are nine multipliers
in each 2D convolution module. As shown in Table I, our
implementations can achieve a speedup of 1.7x-7.8x. Note that
the resource consumption of LEs and registers are almost the
same for all the implementations, and the speedup varies with
the number of embedded multipliers, or more specifically, the
ratio of LEs to embedded multipliers. A high ratio of LEs
to embedded multipliers means more LEs can be used to
implement shifters resulting with a high speedup. The highest
speedup of 7.8x is due to the fact that the Stratix V E FPGA
has the highest rate of LEs to embedded multipliers.

IV. CONCLUSIONS

In this paper, we propose a compressed CeNN frame-
work for computation reduction in CeNNs for obstacle detec-
tion. Particularly, we present powers-of-two based incremental
quantization. The incremental quantization adopts an iterative

procedure including parameter partition, parameter quantiza-
tion, and re-training to produce templates with values being
powers of two. We propose a few quantization strategies based
on the unique CeNN computation patterns. Thus, multipli-
cations are transformed to shift operations, which are much
more resource-efficient than general embedded multipliers.
Experimental results show that the proposed framework can

achieve similar performance compared with that using original
templates without optimization, and the implementation with
incremental quantization can achieve a speedup up to 7.8x
compared with the state-of-the-art FPGA implementations.
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