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Abstract—The proliferation of on-device deep learning mod-
els in resource-constrained environments has led to significant
advancements in privacy-preserving machine learning. However,
the deployment of these models also introduces new security
challenges, one of which is the vulnerability to model extraction
attacks. In this paper, we investigate a novel attack with power
side channel to extract on-device deep learning model deployed,
which poses a substantial threat to on-device deep learning
systems. By carefully monitoring power consumption during
inference, an adversary can gain insights into the model’s inter-
nal behavior, potentially compromising the model’s intellectual
property and sensitive data. Through experiments on a real-
world embedded device (Jetson Nano) and various types of deep
learning models, we demonstrate that the proposed attack can
extract models with high fidelity. Based on experiments, we find
that the power side channel-assisted model extraction attack
can achive high attacking success rate, up to 96.7% and 87.5%
under close world and open world settings. This research sheds
light on the evolving landscape of security threats in the context
of on-device deep learning and provides valuable insights into
safeguarding these models from potential adversaries.

Index Terms—Model extraction attack, on-device deep learn-
ing, power side channel

I. INTRODUCTION

Deep learning (DL) has seen remarkable progress over
the past decade and has gained widespread popularity for
performing various tasks such as image classification, natural
language processing, and security enhancement, among others.
According to a Statista report [1], the global market for
artificial intelligence (AI) is projected to reach 126 billion
US dollars by 2025. Similarly, the Wall Street Journal [2]
predicts that advancements in AI and ML could drive GDP
growth by 14% from 2019 to 2030. On-device AI is an
emerging trend in the field of artificial intelligence, driven
by the need for more efficient and secure processing of data
locally. With the increasing ubiquity of intelligent devices,
from smartphones, smart watches to home appliances, the
demand for on-device AI is rising. The deployment of on-
device deep learning models avoids sharing sensitive data with
the cloud and reduces network traffic, but it also poses new
attack surfaces.

However, exposing deep learning on users’ side also brings
new attacking surfaces, such as model extraction [3], mem-
bership inference [4], etc. In response, recent research has
proposed encrypting models and hiding prediction vectors to
prevent leakage of models and training datasets in on-device
AI at the software level. However, they ignore the informa-
tion attackers gained from hardware-level [5]–[10]. Recent
works show that the emerging side-channel attacks (SCAs)

can observe the low-level behaviors from shared hardware
components and deduce users’ sensitive information such as
secret keys [11], [12]. The side channels arise from various
vulnerable hardware components including cache, memory,
branch, floating point units and etc. For example, cache-based
SCAs exploit the last-level cache, which is shared among all
cores, to monitor the execution of victim applications, which
can include deep learning models.

Most prior studies have focused on analyzing information
leakage resulting from timing-based and access-based Side-
Channel Attacks (SCAs). However, these attacks typically
require the insertion of malicious code into victim devices
to collect side-channel traces, a method that can be mitigated
by restricting third-party programs. Additionally, some other
studies, such as Patwari et al. (2022) [13], adopt a native code
attack model. In this model, the CPU, memory, or storage
information can be monitored using tegrastats on Nvidia Jetson
Nano. Nevertheless, device vendors can still defend against
these attacks by reducing the sampling rate, which results in
a significantly lower attack success rate.

”In this paper, we will present a model extraction attack
using the power side channel against on-device deep learning
models. To achieve this, we first leverage open-source on-
device deep learning models and profile them with a power
monitor to build a database of deep learning models and their
power consumption traces. Then, we explore a wide range
of machine learning classifiers to select the optimal one for
predicting the victim model’s architecture. Lastly, we consider
two attacking scenarios, namely, close world and open world,
to evaluate the effectiveness of the presented attack.

The rest of the paper is organized as follows: Section II
introduces the background of SCAs, on-device deep learning,
and related works. Section III presents threat model of the
proposed attack. The details of the proposed model extraction
attack with power side channel are introduced in Section
IV. Section V comprehensively evaluates the presented attack
with three real-world datasets. Section VI discusses defense
approaches and future works. Finally, Section VII presents the
conclusion of this study.

II. BACKGROUND AND RELATED WORK

A. Side-Channel Attacks

Side-channel attacks (SCAs) refer to a set of attacks that
exploit the side effects of a victim’s execution and compro-
mise users’ privacy, such as stealing passwords, secret keys,
and so on [11]. There are three major categories of SCAs:
timing-based, access-based, and trace-based [14]. For both



timing-based and access-based SCAs, attackers have to place
malicious code alongside victim deep learning models before
launching the attacks. However, edge vendors like Android
OS can forbid the installation of third-party apps or enable
detection tools against such attacks. Hence, this work focuses
on trace-based SCAs, which exploit the measurement of a
victim program’s execution and deduce secrets, such as power
[9], electromagnetic radiation [15], and hardware performance
counters [16], among others. Such trace-based side channels
do not need to intrude into victim systems [9], [16].

B. On-device Deep Learning

The considerable progress made in deep learning has moti-
vated its adoption across various domains, including education,
health, finance, and home appliances. Compared to relying
on cloud servers for DL computations, on-device DL enables
intelligent apps with less bandwidth, reduced latency, and en-
hanced confidentiality. According to recent Samsung research
[17], the number of apps with DL models increased from 165
to 342 between 2020 and 2021, highlighting their increasing
popularity. These DL models are widely adopted in diverse
apps, ranging from communication, finance, and medical to
social networks. Most major vendors have launched mobile DL
frameworks, such as TensorFlow Lite from Google, PyTorch
Live from Facebook, Core ML from Apple, and NCNN from
Tencent, to fast-track the development process for on-mobile
DL models. Although obfuscation and encryption approaches
have been proposed to protect on-device DL models against
leakage from installation files, attackers can still observe the
computations of DL models at the hardware level and recover
secrets, including DL architectures, weights, and labels.

C. Related Work

Previous studies have utilized various side-channel data to
target different aspects such as model architecture, inputs,
or parameters [5]–[10]. Some of these studies have aimed
to decipher or reconstruct model network architectures. This
is crucial for two reasons: first, network architectures are
often proprietary; second, understanding these architectures
can enhance the effectiveness of adversarial and membership
inference attacks, as evidenced in several studies. Common
sources of side-channel information include cache, memory
access, electromagnetic (EM) emissions, power, timing, and
GPU statistics. While the focus has primarily been on network
architectures, efforts have also been made to extract model pa-
rameters and inputs. For example, Wei et al. [9] demonstrated
the feasibility of using power traces to retrieve input images
from an FPGA-based CNN accelerator with known parame-
ters. This work involves inserting a power monitor circuit into
FPGA-based accelerators, which is not applicable to most edge
devices, and vendors can also implement insertion behaviors.
Additionally, Chmielewski et al. [18] analyzed EM emanations
and timing from neural network layers running on a GPU,
successfully identifying the number of layers, neurons per
layer, and types of activation functions, despite investigating
a different side channel with a much lower sampling rate.

Besides deep learning architectures, inputs and parameters
are also under threat. Hua et al. [6] investigated the leakage
from the memory side channel on hardware accelerators and
found that memory access patterns can reverse-engineer both
the structures and weights of CNN models. In addition to
machine learning designs, the inputs and labels are also
threatened. Xiang et al. [9] utilized a power side channel
to reconstruct input images on FPGA-based accelerators. The
capability of this attack was evaluated using one of the most
prominent image datasets, the MNIST dataset [19], achieving
an accuracy of 89%. Liu et al. [10] presented that using
software-based side-channel telemetries can help infer the
output class of input images.

III. THREAT MODEL

The target of the proposed attack is the running applica-
tions on edge devices, which have embedded deep learning
models to empower intelligent functionalities such as health
monitoring, heart attack detection, etc. The goal is to deduce
the architectures of the on-device deep learning models that
are running. We assume that the attacker has no access to
the information about the model architecture and no ability to
insert malicious code into the system to collect system-level
information about the running models.

A. Attacking Settings

To better represent the real-world attacking scenario, we
consider two attack settings: closed world and open world, as
detailed below.

Close world: In the close world setting, each model is
sensitive and exists in the training dataset. The attacker’s
objective is to identify the model architecture used in each
on-device deep learning application.

Open world: In the open world setting, only one model
is sensitive and exists in the training dataset, while others in
the training dataset will be categorized as ”others” (meaning
not sensitive). The attacker will also need to deal with some
unknown models and classify them as ”other.”

B. Assumption

Our attack strategy is based on three key assumptions.
First, to deduce the architecture of the target deep learning
(DL) model, the attacker needs to identify the type of edge
device used by the victim. The attacker can acquire a similar
device, referred to as the attacker’s device, which is used to
run DL models and gather system traces, thereby emulating
the victim’s device. Second, it is assumed that only a single
DL model operates at any one time on the victim’s device,
without any concurrent background processes. This reflects
the actual running application’s global statistics, a plausible
assumption considering the targeted edge device’s limited
resources and typical deployment for specific tasks. Lastly,
the attacker presumes that the victim’s DL model is part
of a recognized family of network architectures, specifically
including but not limited to MobileNet, VGG, ResNet, and
DenseNet. Although we consider known deep learning models
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Fig. 1. The overview of the proposed model extraction attack with power side channel.

as victims, we believe this is practical since most on-device
deep learning models are trained with customized datasets
based on pre-trained models.

IV. PROPOSED ATTACK

This work demonstrates a mode extraction attack that aims
to deduce the on-device deep learning model used in victim
applications through a power side channel. As depicted in
Figure 1, the entire attack consists of two parts: offline
preparation and online deployment. In offline preparation,
known deep learning models from an open-sourced repository
are profiled using a power monitor. This process involves
collecting power consumption traces and using the collected
datasets to build a predictor to infer the running on-device
deep learning models. Once trained, the power monitor can be
launched to profile unknown on-device deep learning models
and send them to the attacker’s classifier for deducing the
running victim model. The details of the attack are introduced
in the following sections.

Fig. 2. High voltage power monitor from Msoon Solution [20]

A. Profile On-Device Deep Learning Models via Power Mon-
itor

1) Power Monitor Setup: We leverage the high voltage
power monitor from Msoon Solution [20] and install the

provided software on Window to transfer the measured power
power consumption of Jetson Nano to our desktop. As seen in
Figure 2, there are two alligator clips (in black and red color)
which can be used to connect and power edge devices. The
voltage output of the power monitor ranges from 0.8 ∼ 13.5V,
and up to 6A, which fits most edge devices. The sampling rate
is 5KHz.

In this work, we chose the Jetson Nano 4GB from the
Jetson series of devices as a case study while we believe the
approach can also apply to other platforms. Jetson Nano can
be powered on via USB-C connector or power pins where
the latter one fits our demand. Hence we choose to connect
the two alligator of power monitor to Jetson Nano pin header.
This device features a Quad-core ARM A57 CPU operating
at 1.43 GHz, a 128-core Maxwell GPU, and 4 GB of 64-bit
LP DDR4 memory with a bandwidth of 25.6 GB/s. It runs
on the Linux4Tegra OS, which is based on Ubuntu 18.04, and
we utilized JetPack SDK version 4.5 for development. The
Jetson Nano offers two power modes: a standard 10W mode
and a more energy-efficient 5W mode. Our data collection
was conducted in the 10W mode. Additionally, we operated
the Jetson Nano in performance mode. This mode deactivates
the DVFS governor and maintains the processor speeds at
their maximum, making it an optimal setting for deep learning
applications that leverage the GPU. In terms of AI capabilities,
the Jetson Nano is capable of delivering up to 472 GFLOPs.

2) Victim On-device Deep Models: Since we assume that
attackers have access to models in open repositories, all victim
on-device deep learning models are from open-sourced repos-
itory [21], including MobileNetV1 [22], MobileNetV2 [23],
VGG16/19 [24], ResNet18/50 [25], DenseNet121/169 [26].
All the models are implemented in PyTorch. The pretrained
models encompass the three stages of inference: data loading,
model (including weights) loading, and execution of model
inference. As for the input, we assume the victim on-device
deep learning models take in images with size of 224x224
pixels and conduct a standard normalization process. Our
experiments involve running inference on 100 images from the
ImageNet ILSVRC Test set. We employ PyTorch Dataloaders
for random shuffling and sampling of these images. The
images are then normalized and transferred to the GPU for pro-



cessing in single-batch inference. This data loading process,
using images from the ImageNet Test set, remains consistent
across all applications. We select models for these applications
from a pool maintained by the attackers, load the chosen model
and its pretrained weights onto the GPU, and then carry out
single-batch inference to determine the predicted class. The
overall structure is common to all applications, differing only
in the choice of model.

B. Power Side Channel Prepossessing

The execution time of on-device deep learning models
ranges from a few milliseconds to a few tens of milliseconds,
which causes various lengths of samples in each power trace.
In response, we will choose the longest length among all
collected power traces as the fixed one and pad with zeros if
the length of a power traces is less. For the investigated victim
models, the longest execution time is eleven milliseconds. This
equates to 55 samples in the power traces. Hence we choose
60 as the length of all power traces and conduct padding with
zeros for all traces that have fewer samples.

C. Building On-device Deep Learning Model Predictor

In the building step, 100 traces from each victim on-
device deep learning model are collected and labeled. The
labeled dataset is used to train various types of machine
learning-based model architecture predictor including classical
machine learning, time-series, or deep learning models. The
rationale for choosing these machine learning models is that
they are from different branches of ML including classical
model: RandomForest (RF), support vector machine (SVM);
deep learning models: fully connected network (FCN), long
short-term memory (LSTM); time-series models: dynamic
time warping (DTW), Shapelet, covering a diverse range of
learning algorithms that support our comprehensive analysis
and experiments. For the attacking phase, the proposed attack
model receives unlabeled power traces in which each of the
trace is corresponding to a victim model inference and the
trained model predictor outputs the prediction results. Each
victim model has 100 traces in total, with 70 of them used for
training the model architecture predictor and the remaining 30
for testing it.

D. On-line Attack Procedure

As presented in Figure 1, we setup the power monitor
for unknown incoming victim applications with deep learning
model inside.

• Step 1: Initiate power monitor on the edge devices and
start the victim applications with required input images.

• Step 2: Preprocess the collected power traces with the
same preprocessing approach (IV-B) as the one in prepa-
ration.

• Step 3: Send processed data to the attacker’s model
predictor for deducing the deep learning models used in
the victim applications. The deduced label information
can be further leveraged by other malicious activities.

TABLE I
TRAINING AND TESTING DATASET FOR CLOSE WORLD.

Family Victim Model Size in Training Size in Testing
MobileNet MobileNetV1 70 30
MobileNet MobileNetV2 70 30

VGG VGG16 70 30
VGG VGG19 70 30

ResNet ResNet18 70 30
ResNet ResNet50 70 30

DenseNet DenseNet121 70 30
DenseNet DenseNet169 70 30

Fig. 3. Close world attacking success rate with various machine learning
classifiers.

V. EVALUATION RESULTS

In this section, we evaluate the attacking success rate, i.e.,
model predictor accuracy on victim deep learning models,
under close world and open world settings.

A. Close World Extraction Results

In this setting, we consider attackers have access to all
victim on-device models and have corresponding power pro-
filing results. As shown in Table I, there are total of 560
records in training dataset and 240 records in testing dataset.
As presented in Figure 3, we observe all attacking success rate
of the six classifiers obtain above 90% accuracy Among all
six classifiers, we find that RF performs the best and achieves
96.7%, indicating a high risks of leaking model architecture
information to malicious party.

TABLE II
EXAMPLE OF TRAINING AND TESTING DATASET FOR OPEN WORLD.

Family Victim Model Size in Training Size in Testing Label
MobileNet MobileNetV1 70 30 Sensitive
MobileNet MobileNetV2 70 30 Sensitive

VGG VGG16 70 30 Others
VGG VGG19 70 30 Others

ResNet ResNet18 70 30 Others
ResNet ResNet50 70 30 Others

DenseNet DenseNet121 0 30 Others
DenseNet DenseNet169 0 30 Others

B. Open World Extraction Results

In the real world, an attacker might not have access to all
victim models and may be interested in only one sensitive



Fig. 4. Open world attacking success rate with various machine learning
classifiers.

model. Hence, we also consider an open-world attacking
setting. Regarding the dataset, we designate one model family
from the four as sensitive, two of the four as others, and the
remaining one as unknown. We rotate the sensitive and others
and average the attacking success rate of the four rotations.
In each rotation, we include a data record as exemplified in
Table II, and there are 240 records for testing in each rotation.
As seen in Figure 4, we observe a decrease in attacking
success rate by around 10% compared to the closed world.
Therefore, it is more important for the attacker to choose the
most optimal classifiers under the open-world setting. How-
ever, the proposed model extraction attack can still achieve
a 87.5% prediction accuracy of victim deep learning models
with RF. This provides insights that the attacker can still
have model architecture extraction ability even with unknown
datasets, highlighting the importance of defending on-device
deep learning models against the presented attack with power
side channel.

VI. DEFENSE DISCUSSION AND FUTURE WORKS

A. Potential Defense

Since the external measurement of power consumption
cannot be controlled by the vendor, it is important to mask
the power side channel during the execution of on-device
deep learning models. Therefore, we propose adding random
fluctuations to power traces as a countermeasure against the
presented model extraction attack. To achieve this, the victim
application can create a dummy thread that executes some
lightweight instructions, causing noise in power consumption.
However, this might result in extra performance and energy
costs, which some edge devices are less likely to afford. A
more fine-grained method can leverage adversarial learning to
generate decoy instructions that can mask the victim’s deep
learning models while also minimizing power costs.

B. Future Works

Although promising results were obtained in this work, there
are still two avenues for future exploration to comprehensively
assess the threats of exposing on-device deep learning model
architectures. Firstly, the influence of image size on our model

predictor can be investigated in the future. Since different
applications have their own settings for inputs, we will extend
the experiment to evaluate whether the presented attack can
also be generalized to inputs of various sizes. Secondly, an
anomaly detection method can be used to build a robust
machine learning classifier in an open-world setting. In this
work, we leveraged only supervised classification algorithms,
whose main drawback is dealing with unknown datasets.
Anomaly detection algorithms, in contrast, focus on defining
normal behaviors and identifying outliers.

VII. CONCLUSION

The progress made in deep learning (DL) boosts its ap-
plication in edge devices, including mobile phones, wearable
watches, and home appliances. Protecting the on-device archi-
tecture becomes a critical part of securing intellectual property
(IP). This paper investigates the potential of the power side
channel to reveal on-device deep learning models. To achieve
this, we profile on-device DL models downloaded from an
open-source repository via a power monitor and then train a
model architecture predictor using various machine learning
classification techniques. We find that Random Forest (RF)
performs the best for both closed and open world settings,
achieving 96.7% and 87.5% attacking success rates, respec-
tively. This highlights the importance of masking hardware-
level information for on-device models.

REFERENCES

[1] “Statista,” in https://www.statista.com/statistics/607716/worldwide-
artificial-intelligence-market-revenues/.

[2] “Wall street journal,” in https://www.wsj.com/articles/the-economic-
value-of-artificial-intelligence-1540568499.

[3] X. Gong, Y. Chen, W. Yang, G. Mei, and Q. Wang, “Inversenet:
Augmenting model extraction attacks with training data inversion.,” in
IJCAI, pp. 2439–2447, 2021.

[4] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
symposium on security and privacy (SP), pp. 3–18, IEEE, 2017.

[5] S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow, K. Kulda,
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